

PSI Colloquium, May 11, 2023

Dynamic Gravity: From a crazy idea to high precision measurements

Jürg Dual, Emeritus since Aug. 2022

Tobias Brack¹, Fadoua Balabdaoui², Stefan Blunier¹, Laura De Lorenzis¹, Jonas Fankhauser¹, Helge C. Hille¹, Stephan Kaufmann¹, Michael Meyer^{1,3}, Francesco Palmegiano¹, Donat Scheiwiller¹, Jean-Claude Tomasina¹, Pavel Trtik³, Bernhard Zybach¹

¹Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland ²Seminar for Statistics, Department of Mathematics, ETH Zurich, Zurich, Switzerland ³Paul Scherrer Institut (PSI), Laboratory for Neutron Scattering and Imaging, Villigen, Switzerland

Towards High Precision Measurements of Dynamic Gravity

- 1. Introduction: Motivation and History
 - Theory
 - Experiments
- 2. Beam-Beam Configuration
- 3. Rotating Bars as Transmitter
- 4. Current Efforts and Improvements
- 5. Conclusions and Outlook

ETH zürich

Our Gravity Project: Motivation and History (1)

1991: First idea of a dynamical transmitter – receiver gravity experiment during preparing the introductory lecture at ETH with the title

"Triumph und Krise der Mechanik"

```
Dynamical means:
```

Much higher frequencies than previous experiments (which are "static", mHz) but remain in near field (r << λ =c/f)

What can we measure in the laboratory, which relates to the wave nature of gravity:

- Wave speed and time delay of interaction
- Energy Flow
- Attenuation, Dispersion
- "How long would it take until we realize gravitationally if the moon suddenly would disappear?"

Our Gravity Project: History (2)

Ab 1992: Start of work -> Dissertation of William Walker 1997 Coreferee Walter Kündig, UZH, expert in experimental gravity Referee JD

- **1997:** Preliminary Result:Very difficult experimentally"Does not make sense, near field, .."
- 1998: Work was abandoned, no funding, William Walker leaves the group"A project for the time before retirement!"

2015: First direct observation of gravity waves generated in outer space by black hole mergers using LIGO und Virgo - two international large scale projects, LIGO alone US\$395 million

Our gravity project: History (3)

- 2018: Restart of our project in CLA
- 2019: Start of experiments in Furggels, a former Swiss army fortress
- March 2021: First successful fully characterized experiment for beam-beam configuration

Fully characterized means:

- amplitude and phase response
- distance behaviour,
- measure non gravitational crosstalk (mechanical, ...)
 - -> Gravitational constant, "Inverse square law", ..

Our gravity project: History (3)

- April 2022: 1st Presentation at APS Meeting
- August 2022:

1st paper published in Nature Physics Huge response!

- December 2022: 2nd Paper submitted
 - In Review with Communications Physics
- April 2023: Presentation at APS Meeting
- Meeting Nr. 158!
- So far: 14 coworkers, mostly part time
- Minimal Budget, but much support from ETH and recently a foundation

Gravity

- lat. gravitas: Weight
- Things with mass or energy are attracted towards one another
- One of the four fundamental forces in nature

Forces	Range [m]	Relative strength
Gravitation	∞	1
Elektromagnetism	∞	10 ³⁶
Weak Interaction force	$< 10^{-18}$	10 ²⁵
Strong Interaction force	$\approx 10^{-15}$	10 ³⁸

• Fifth Force?? (E. Fischbach, ~1990)

Wikipedia

History of Gravity

Antics, Orient

- Gravity as the reason for free fall
- Foundation for geocentric model of the world

Kopernikus (1543)

- Also other celestial bodies exert gravity
- → Heliozentric model of the world
 Kepler (1609)
- Each body exerts gravity

Galilei (beginning of 17th century)

• First empirical investigations on the free fall

Aristoteles (384 - 322 v. Chr.)

Johannes Kepler (1571 – 1630)

Galileo Galilei (1564 - 1642)

History of Gravitation – Newton's theory of gravitation Isaac Newton (1687)

- First mathematical description
- G gravitational constant: Big G

G=6.674 30 x 10^{-11} m³ kg⁻¹ s⁻² relative standard uncertainty: 2.2 x 10^{-5} (??)

Isaac Newton (1643 - 1727)

Consequences of Newtonian Gravity

- The action of gravity is instantaneous
- Allows to model the motion of planets
- Foundations of classical mechanics

•
$$g \approx \frac{Gm_e}{r_e^2} = 9.81 \frac{\mathrm{m}}{\mathrm{s}^2}$$

History of Gravitation – Einstein's Theory of Relativity

Special Theory of Relativity SRT (1905)

- Radiation has energy \rightarrow light has a virtual mass
- Nothing can be faster than the speed of light

General Theory of Relativity GRT (1915)

- New model for gravitation
 - Gravitation is a geometric property of space and time

Consequences

- Gravitation has infinite range
- Gravitation cannot be shielded
- Existence of gravitational waves

$$E = mc^2$$

Albert Einstein (1879 – 1955)

Summary

Physical Theories of Fundamental Interactions

Fundamentale Wechselwirkungen und ihre Beschreibungen (Theorien in frühem Stadium der Entwicklung sind grau hinterlegt.)							
	Starke Wechselwirkung	Elektromagnetische Wechselwirkung		Schwache Wechselwirkung	Gravitation		
klassisch		Elektrostatik	Magnetostatik		Newtonsches Gravitationsgesetz		
		Elektrodynamik			Allgemeine Relativitätstheorie		
quanten- theoretisch	Quantenchromodynamik (Standardmodell)	Quantenelektrodynamik		Fermi-Theorie			
			Elektroschwache Wechselwirkung (Standardmodell)		Quantengravitation (?)		
	Große vereinheitlichte Theorie (?)						
	Weltformel ("Theorie von Allem") (?)						

Gravity separated from everything else!

A unified theory (theory of everything) would need to include Gravitation

Summary Theory of Gravity

Quantum Theory

- Everything has quantum property: Graviton?? (Hypothetical ...)
- Does not fit to GRT

Current State

- Numerous modified theories based on GRT: Which one to take?
 e.g. Parametrized Post Newtonian Formalism for weak fields
- Many open questions regarding our understanding of the universe (cosmology)
 - dark matter
 - accelerating expansion of the universe
 - James Webb Telescope: Too big galaxies in the early universe?
- "Mystery of Gravity is deepening" with new G measurements (Physics World 2018)
- What can we learn from a lab experiment in the Near Field? ($r << \lambda$)

Measurement of Gravitation

Goal

- Determining the mass of planets (18. 20. century)
- Confirmation of physical theories (20. century up to now)

Problems

- Very weak interaction and forces
- Strong influence of the force of the earth, tides or other nearby masses (constant in time)
- Hidden static masses?

Measurement of Gravitational Constant G

Torsion Balance

- Developed and used by Henry Cavendish (1798)
- How does it work? A dumbbell (m₁) is rotated by masses m₂ measure the equilibrium rotation angle, wire acts as weak spring
 - **<u>Static</u>** Experiment (mHz regime)
- Many improvements
 - Thinner wire, smaller masses (Boys, 1894)
 - Time-of-swing (Eötvös, 1895)
 - Servo-controlled measurements (Michaelis, 1996)

ETH zürich

Static Measurement of Gravitational Coupling

- Easy theoretical description
- More than 200 years of experience
- Flexible design
- State of the art measurement

Problems/Issues

- Systematic errors
 - Influence of unknown static masses
 - Ground noise/Temperature instability
- Inaccessibility of dynamics!
- Why Dynamics:
 - Static masses not relevant
 - Wave nature of gravity:

Energy flow, Wave speed, Time delay of interaction, Attenuation (Shielding), Dispersion

Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2018. *Rev. Mod. Phys.* **93**, 025010 (2021).

Dynamic Measurement of Gravitational Coupling

Past research

- Sinsky, J. A. Generation and detection of dynamic Newtonian gravitational fields at 1660 cps. *Phys. Rev.* **167** (1968).
- Hirakawa, H., Tsubono, K. & Oide, K. Dynamical test of the law of gravitation. *Nature* **283** (1980).
- Walker, W. D. Gravitational interaction studies. Diss. ETH Zürich 12289 (1997).
- Astone, P. et al. Experimental study of the dynamic Newtonian field with a cryogenic gravitational wave antenna. *Eur. Phys. J. C.* (1998).
- Long, J. C. et al. Upper limits to submillimetre-range forces from extra spacetime dimensions. *Nature* **421** (2003).
- Liu Y. et al. Gravitational forces between nonclassical mechanical oscillators. *Phys. Rev. Applied* **15** (2021)
- Ross, M. P., et al. Initial results from the Ligo Newtonian calibrator. Physical Review D, **104**(8) (2021).
- mostly distance behavior
 - → No fully characterized lab experiment in frequency range > 1Hz

Our Goal

- fully-characterized **dynamic** experiment in the lab
- Investigation of gravitation at frequencies ~42Hz
 i.e. at black hole merger frequencies

Figure 2: Noise curves for a selection of gravitational-wave detectors as a function of frequency.

ETH zürich

Theory of Gravitational Coupling Between Resonators

Idea: Periodic excitation force near or at resonance frequency (ω_0) of **detector**

Varying distance $d = d_0 + u_t \sin(\omega t)$

Single Degree of Freedom Oscillator (SDOF):

Amplitude at resonance: $u_d = 2 \cdot \frac{Gm_t Q_d}{d_0^3 \omega_0^2} u_t$

Experimental Realisation

- + **Resonant amplification** (high $Q_d \sim 10^4$)
- + Decoupling from **static masses**
- + Commercial heterodyne laser interferometers
- + Make use of **dynamic measurement** principles

Lockin Amplifiers: (BW 3dB = 1.5 mHz) Long-term measurement (> 1h per frequency)

- + Noise free and temperature stable lab (VC-G)
- Theoretical description more complex
- Risk of transmission of non-gravitational forces
- **±** Amplitude scales with $\frac{1}{\omega_0^2}$!

ETH zürich

Experimental Realization

 $u_d = 2 \cdot \frac{Gm_t Q_d}{d_0^3 \omega_0^2} u_t$

- Detector: High Q_d (>10⁴) beam in first bending resonance suspended at nodes
 -> "low" frequencies at reasonable dimensions
- Transmitter: Need highly stable motion
 - (because of high Q of detector, BW = f/Q, $T_{stationary} \sim Q T_{per}$)
 - of heavy mass with maximal change of distance between mass elements
 - allows mechanical decoupling
 - at minimal distance
- Set up 1: Parallel beam as transmitter, excited near resonance,
 - suspended at nodes to minimize disturbances, and
 - working against an inertial mass -> internal force as excitation
- Setup 2: Two precisely balanced rotating bars synchronized to excitation frequency (f/2, f/4, ..)

- Setup 1: Two resonating beams at 42 Hz -

- Frequency Response Transmitter vs. Detector -

Q Factor Design:

Detector beam: Q large -> amplification

Transmitter beam: medium Q

(simplifies tuning !)

Measurement

- Frequency sweep
- Time per frequency defined by:
 - Time constant transmitter
 Q = 300 → 2.5 sec
 - Time constant detector
 Q = 30000 → 250 sec
 - Time constant Lock-In 8th order lowpass → 500 sec
- -> Measurement time ~1hr.

- Experimental Setup -

Raw data: Typical Lockin Signals vs. time

Why high temperature stability important?

BW at Q=40000: ca. 1mHz

Temperature dependence of resonance frequency ->

To have a stable measurement point on the resonance curve We need

 $\alpha \Delta T \ll BW$

Eg. ΔT =0.01°C -> Δf =0.18 BW

-> Furggels ideal:

High temperature stability Low mechanical noise

Resonance frequency vs. T for titanium detector beam

Modelling of Gravitational Coupling Between Resonators

- Continuum Mechanics -

Continuum Mechanics (Euler Bernoulli Beam Model)

1. Force between elements dm:

$$\boldsymbol{F}_{G}^{(\mathrm{d}\boldsymbol{m_{t}}-\mathrm{d}\boldsymbol{m_{d}})} = G \frac{\boldsymbol{r}}{\|\boldsymbol{r}\|^{3}} \mathrm{d}\boldsymbol{m_{t}} \mathrm{d}\boldsymbol{m_{d}} ; \ \boldsymbol{r} = \boldsymbol{r_{\mathrm{d}\boldsymbol{m_{d}}}} -$$

2. Force field as a function of one or several spatial variables

$$F_G(x_d, t) = G\rho_d \rho_t \int_{(V_t)} \int_{(A_d)} \frac{r}{\|r\|^3} dV_t dA_d$$

- time dependent (since *r* is changing with time), but **non-linear**
- Can be solved by numerical integration/FEM
- 3. Model of continuum vibration (detector)
 - Force field as excitation force
 - a) Time discrete simulation
 - b) Fourier series at ω_0 Finite elements + analytic

- Setup 1: Two resonating beams at 42 Hz -

Expected amplitudes

- Mass transmitter beam $m_t \approx 4 \text{ kg}$
- Resonance frequency: $\approx 42 \text{ Hz}$
- Chamber pressure: $\approx 1 \text{ mbar}$
- Detector's beam damping: $Q_d \approx 35000$
- Excitation amplitude: $u_t \approx 0.4 \text{ mm} \left(0.1 \frac{\text{m}}{\text{s}}\right)$
- Minimal beam distance: $d_0 = 59 \text{ mm}$

Detector amplitude $u_d \approx 7 \frac{\text{nm}}{\text{s}} (25 \text{ pm})$

Note: 1nm=0.000001mm, 1pm= 0.001nm

Velocity measurement

- Laser Doppler vibrometry (3)
- Lock-in technique (BW 3dB = 1.5 mHz)
- Long-term measurement (30 frequencies,ca. 1h per frequency)
- Noise free lab (VC-G)

Resolution
$$\approx 0.16 \frac{\text{nm}}{\text{s}} (0.6 \text{ pm})$$

Dynamic Measurement of Gravity – Data Evaluation

Frequency Sweep (ca. 30 Frequencies, 30h)

- Extract Bending Motion *u*_d
- Calculate transfer function $\frac{u_d}{u_t}$
- Fit transfer function of SDOF system

•
$$\frac{u_d}{u_t} = \frac{i\omega \cdot A_0 \cdot \frac{\omega_0}{Q}}{-\omega^2 + \frac{\omega_0}{Q} \cdot i\omega + \omega_0^2} \cdot e^{i\varphi_0} (+XT)$$

 $\rightarrow \omega_0, Q, A_0, \varphi_0$

• Theory yields *G* as a function of *d* $A_0 \sim \frac{Gm_t Q_d}{d_0^2 \omega_0^2}$ at resonance

Bending

Gravitational Coupling Between Resonators (Beam – Beam Configuration)

Distance variation (59 mm .. 120 mm)

- Distance behavior $\sim \frac{1}{d_a^2}$
- Agreement with theory within 2-3%

For the **first time** we achieved

- Derivation of **G** from dynamic experiment at frequencies 10⁴x higher than in established, static experiments $G = 6.825(75) \cdot 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$
- Quantify energy flow due to gravitation (10⁻²⁰ W at 59 mm)
- Results published in Nature Physics, 2022 incl. News and Views Article

Dynamic Gravity First Paper

Publications

- Brack et al. Dynamic measurement of gravitational coupling between resonating beams in the hertz regime. Nat. Phys. 18, 952–957 (2022). https://doi.org/10.1038/s41567-022-01642-8
- Rothleitner, C. Good vibrations. *Nat. Phys.* 18, 856–857 (2022). <u>https://doi.org/10.1038/s41567-022-01646-4</u>
- An unconventional strategy sizes up Newton's 'big G', Nature 607, 424 (2022) <u>https://www.nature.com/articles/d41586-022-01911-9</u>
- Schirber, M. Bending under Big G. *Physics* 15, 121 (2022) <u>https://doi.org/10.1103/Physics.15.121</u>
- Plus numerous accompanying articles in media

- Setup 2: Two Rotating Bars Excite Bending Resonance -

29

Theory Excitation of Detector Beam by two Rotating Bars

Nonstandard moving load problem: Known from trains on bridges!

Non separable loading of partial differential equation Classical Book by L. Fryba: Vibrations of Solids and Structures under Moving Loads

Here:

Distributed loading Variable force distribution Variable speed of load Speed close to wave speed Periodic

Solve by normal mode expansion

Or by FEM

To yield stationary solution

- Setup 2: first results -

- Custom made motor synchronization ($\Delta \phi < 0.01 \text{ deg}$)
- Chamber pressure ≈ 0.02 mbar

maxon

Dynamic Gravity, Results for Rotating Bar Transmitters

- Distance Dependency
 - $u_d \sim \frac{1}{r^5}$
- Determination of G
 - $G = 6.66(7) \cdot 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$
 - O.2% Deviation from CODATA
 - ~1% Accuracy
- Energy Flow
 - Up to 3.75 10⁻¹⁸ J/s
 - 10²² times greater than what is quoted in text books for gravitational *waves*
- In Review with Communications Physics

4. Current Efforts and Improvements

- 1. More gravitationally induced amplitude -> 20x20mm rotating W bars
- 2. Individual calibration of the laser measurement chains

electrical calibration feeding a known artificial carrier and Doppler frequency signal into the Laser demodulators and measuring the LIA outputs

3. Improved vibration isolation of DB from Transmitter motion:

3.1 Passive vibration isolation stage in detector chamber (Factor 5-7)

The detector beam inside the vacuum chamber is hanging from a T-plate structure of about 20kg, hanging on 4 springs

ETH zürich

3. Improved vibration isolation of DB from transmitter motion:

3.2 Active vibration minimization of transmitter chamber (Factor 2)

4. Neutron tomography at NEUTRA (PSI, Villigen, Switzerland)

- Transmittance through 28.3mm of W
 - 10⁻³⁸ for 150 keV Xrays
 - 0.015 for 25 meV neutrons
- Standard imaging set-up MIDI@NEUTRA beam line
- 30 µm Gadox (Tb-doped) scintillator screen
- High resolution tomography for 67mm end parts and Low resolution tomography for whole rod
- Mean sample-to-detector distance
 approximately 17mm

Results

The spatial resolution of the high-resolution and low resolution combined tomographies is < 100 μ m -> A void of this size corresponds to a mass ratio of 10⁻⁸ for the 67mm of the transmitter bar closest to the detector

Bars can be modelled as homogeneous!

20 x 20 x 500mr Tungsten Rod

Conical Recess

5. Improvement of Simulation of the Rotating Bars Experiment

- Experiment and Simulation validate each other
- Combining 3 Approaches
 - Analytical model and numerical integration
 - Commercial Finite Element model
 - Isogeometric (IGA) (FEM) model
- Used as reference for the computation of the gravity constant *G*
- Simulation needs to be highly accurate, i.e. orders of magnitude more accurate than the experiment:

Accuracy goal for velocity amplitude: $\sim 0.1 \text{ ppm}$

3 Detector Beam Models for the Gravity Experiment

Some results: 20x20mm rotating bars (2,1,-1)

Typical run:

70 points on resonance curve (random) -> > 4 days

Per point we record 500 points in time / the last 200 are averaged

3 Detector beam lockin channels

7 accelerometer lockin channels (2 on DC, 5 on TC)

Temperatures, pressures

Jitter

Figure:

Raw data (~10hrs) at

- 3 Lockin Amplifiers measuring gravitation
- DC acceleration

Some results: 20x20mm rotating bars (2,1,-1), April 2023

Complex Fit and Fit Results

Theory:

FEM/IGA Results: $A/Q = 1.487 \ 10^{-12} \ m/s$

 $A/Q = 1.500 \ 10^{-12} \ m/s$

$A/Q = 1.486 \ 10^{-12} \ m/s$

ETH zürich

1/2

۷

upper Cl

267.78247

6.9436e-08

1.4869e-12

7.6290e-10

46769

-0.0711

0.1319

* S

unit

-

m/s

m/s

rad

m/s

rad

%

rad/sec

5. Conclusions and Outlook

Conclusion

- Improved dynamical gravity experiment at 42 Hz with full quantitative comparison between measurement and theory
- Current state:
 - Good agreement between theory and experiment with **deviation** ~ 0.1%
 - Uncertainty ~0.1%

(to be confirmed with full error analysis)

- Max. ~300 nm/sec for excitation with two rotating 2x2cm bars
- Neutron tomography characterization of samples (no holes of size >100µm)
- Mechanical crosstalk/signal ratio improved by more than 100x
- Improved FEM Modelling with 10⁻⁴ accuracy

5. Conclusions and Outlook

Outlook

- Improve
 - Reduce temperature sensitivity by optimized detector beam
 - Distance measurement
 - Continuous improvements on all the aspects discussed
 - Double lock-in technique to relate the velocity only to c_{Light} and frequency
- Investigate: It is getting more and more interesting!
 - G and distance curves
 - Gravitational shielding
 - Phase behaviour
 - Frequency influence on gravitation
 - Influence of other fields: Electric fields at different frequencies, quantum devices,...
 - Any further suggestions?
 - Collaborations?

Acknowledgement:

We thank ETH Zurich for financial support, in particular for the rooms in Furggels!

We thank numerous people for their input and help: PTB, Polytec GmbH, Zurich Instruments, ZC Ziegler Consultants AG, Maxon Motors AG, The Furggels team, etc.

Thank you very much for your time and attention!

Prof. Jürg Dual dual@imes.mavt.ethz.ch

ETH Zürich, 8092 Zürich

https://expdyn.ethz.ch/

References

[1] Brack, T., et al. (2022). Dynamic measurement of gravitational coupling between resonating beams in the hertz regime. Nature Physics, 18(8), 952–957. doi:10.1038/s41567-022-01642-8

[2] Brack, T., et al. (2023). Dynamic gravitational excitation of structural resonances in the hertz regime using two rotating bars. Retrieved from https://arxiv.org/abs/2301.01644 doi: 10.48550/ARXIV.2301.01644, in review with Communications Physics, 2023