

High-Current H₂⁺ Compact Cyclotrons for Particle Physics and Beyond

Daniel Winklehner, MIT PSI Colloquium – May 12th, 2022 This is a talk about synergy between particle physics and accelerator physics...

...but also a talk about why I am excited about this photo...

Outline

Original Motivation: IsoDAR neutrino physics
 In a few years this will yield very exciting particle physics

• Cyclotrons "101"

- The physics challenges of high intensity beams
 → How we are changing the game
- More Applications:
 - Medical Isotopes, Materials, ...
 - Multi-Megawatt beams for Particle Physics and ADS

IsoDAR Collaboration

Co-spokesperson: Josh Spitz (<u>spitzj@umich.edu</u>) Co-Spokesperson: Daniel Winklehner (<u>winklehn@mit.edu</u>)

Thanks to all postdocs, postbachs and students!

• Postdocs: Jungbae Bahng, Daniel Koser, Medani Sangroula, Matthias Frey,

- Graduate Students: Spencer Axani, Jakob Jonnerby, Sonali Mayani Joseph Smolsky, Loyd Waites, Philip Weigel,
- Postbachs: Devin Schoen, Thomas Wester
- Undergraduate Students: Patrick Bedard, Anastasia Bershanska, Monica Busza, Jesus Corona, Frances Hartwell, Abutalib Namazov, Janette Park, Aashish Tripathee, Maria Yampolskaya, Ryan Yang

Outline

Original Motivation: IsoDAR neutrino physics
 → In a few years this will yield very exciting particle physics

- Cyclotrons "101"
- The physics challenges of high intensity beams
 → How we are changing the game
- More Applications:
 - Medical Isotopes, Materials, ...
 - Multi-Megawatt beams for Particle Physics and ADS

Three "massless" neutrinos in the Standard Model

- Three "known" neutrino flavors
- Part of the lepton weak doublets
- Only interact via weak force
- Example: Beta-Decay:

Standard Model of Elementary Particles

We now know neutrinos have mass and mix!

- Confirmed in SuperK and SNO for solar & atmospheric neutrinos.
- Mass and Flavor Eigenstates are not aligned → Mixing

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Now observed in many consistent experiments

"Wave" in Rate vs L/E (distance/energy) Only observed across multiple cycles in KamLAND

Introduction

But the picture is not tidy \rightarrow New Physics?

We need a really decisive follow-up!

If it is oscillation related then it will produce some kind of wave in L/E

If there is....

Requires: Very high statistics, well understood neutrino flux

IsoDAR – Isotope Decay At Rest @ Yemilab

 $\overline{\nu}_e$

 $\overline{\nu}_e$

17 m

Search for sterile neutrinos through oscillations at short distances and low energy

Protons

60 MeV

12

15

 $\begin{array}{cc} 6 & 9 \\ E_{\nu} \ ({\rm MeV}) \end{array}$

1.0

0.8

0.2

0.0

0

3

Isotropic source of $\bar{
u}_e$

 $\overline{\nu}_e$

through decay at rest

7Li Sleeve

Be Target

kton-scale LS detector (underground)

IsoDAR – Isotope Decay At Rest @ Yemilab

Search for sterile neutrinos through oscillations at short distances and low energy

 $\overline{\nu}_e$

Protons

60 MeV

12

15

1.0

0.8

0.2

0.0

0

3

6

 E_{ν} (MeV)

9

 ν_{e}

through decay at rest $\overline{\nu}_e$

 $\overline{\nu}_e$

.....

 $\overline{\nu}_e$

Isotropic source of $\bar{\nu}_e$

7Li Sleeve

Be Target

kton-scale LS detector (underground)

 $P_{\text{osc.}} = \left| \langle \nu_s | \nu_\mu(t) \rangle \right|^2 = \sin^2 2\theta \cdot \sin^2 \frac{1.27 \Delta m^2 L}{2}$

2

L/E (m/MeV)

2

IsoDAR@ Yemilab: $\Delta m^2 = 1 eV^2$ and $sin^2 2\theta = 0.1$

No position/energy smearing
 With position/energy smearing

5

1.00

0.95

0.90

0.85 0

Observed/Predicted

17 m

All of this is great, but...

- Where do the protons come from?
- High intensity neutrino sources require high intensity proton sources 10 mA = 10x more than commercial machines!
- Even more, this one has to be built underground at a reasonable cost

 $\overline{\nu}_e$ Protons Be Targe 60 MeV $\overline{\nu}_e$

All of this is great, but...

- Where do the protons come from?
- High intensity neutrino sources require high intensity proton sources 10 mA = 10x more than commercial machines!
- Even more, this one has to be built underground at a reasonable cost

Introduction

Cyclotrons are the best suited accelerators

- IsoDAR Neutrino Source
- Cost-effective
- Compact
- Alternatives:
 - Linac (Linear Accelerator): Long, Expensive
 - FFA (Fixed-Field Alternating-Gradient): Larger Ring, Pre-accelerate, High-Intensity not established

Success! \rightarrow Pre-approval to run at Yemilab in Korea

IsoDAR Neutrino Source

Caverns are already constructed Now we need to put the cyclotron in it

Outline

Original Motivation: IsoDAR neutrino physics
 In a few years this will yield very exciting particle physics

• Cyclotrons "101"

- The physics challenges of high intensity beams
 → How we are changing the game
- More Applications:
 - Medical Isotopes, Materials, ...
 - Multi-Megawatt beams for Particle Physics and ADS

The cyclotron as seen by the inventor

• B-field forces particles on circular orbit:

 $r = \frac{mv}{qB}$ $\omega_{RF} = 2\pi f = \frac{qB}{m}$

• Oscillating "Dee" voltage accelerates

$$V(t) = V_{\max} \cdot \cos(\omega_{\rm RF} \cdot t - \Phi_S)$$

The cyclotron as seen by the inventor

• B-field forces particles on circular orbit:

 $r = \frac{mv}{qB}$ $\omega_{RF} = 2\pi f = \frac{qB}{m}$ $r = \frac{\gamma\beta m_0 c}{qB}$ $\omega_{RF} = \frac{qB}{\gamma m_0}$

• Oscillating "Dee" voltage accelerates

$$V(t) = V_{\max} \cdot \cos(\omega_{\rm RF} \cdot t - \Phi_S)$$

Most modern cyclotrons are isochronous

- Increase B-Field with radius to counter relativistic effects
- Use Azimuthally Varying Field (AVF) for vertical focusing

Higher energy gain per turn with harmonics

• Dee doesn't have to be "D"-shaped:

Higher energy gain per turn with harmonics

• Dee doesn't have to be "D"-shaped:

Higher energy gain per turn with harmonics

• Dee doesn't have to be "D"-shaped:

- In general: $\omega = h \cdot \frac{qB}{m}$, RF frequency can be any integer multiple of particle frequency.
- Dees can be made into double gap cavities with angle = 180/h

hysics 20 Technology

of base frequency

Acceleration (harmonic 6)

Acceleration (harmonic 6)

Acceleration (harmonic 6)

Only a narrow phase window can be populated

<u>Phase Acceptance</u> Window in RF phase space that can safely be populated

Injection through a spiral inflector

- Cyclotron Main B-Field
- Electrostatic Field from Spiral Electrodes
- Combination guides particles
- Difficult to simulate precisely

Extraction from a compact cyclotron

State of the art in high intensity cyclotrons

- PSI Injector II:
 - 2.7 mA of protons
 - 72 MeV
 - Separated Sector Cyclotron
 - Very large! Radius= 5 m
- Commercial Cyclotrons:
 - Isotope Production
 - ~1 mA of H-
 - Compact! Radius < 1 m
- We need:
 - Compact, and
 - with more beam (10 mA!)

Outline

Original Motivation: IsoDAR neutrino physics
 In a few years this will yield very exciting particle physics

• Cyclotrons "101"

- The physics challenges of high intensity beams
 → How we are changing the game
- More Applications:
 - Medical Isotopes, Materials, ...
 - Multi-Megawatt beams for Particle Physics and ADS

What is the basic limitation?

• "Space charge" and the associated problems

10 mA of protons do not want to be crowded together in a bunch!

This is a dynamic problem, the shape of the beam is constantly changing as you accelerate.

• But also *controlled* and *uncontrolled* beam loss!

What is the basic limitation?

• "Space charge" and the associated problems

10 mA of protons do not want to be crowded together in a bunch!

This is a dynamic problem, the shape of the beam is constantly changing as you accelerate.

• But also *controlled* and *uncontrolled* beam loss!

What building blocks can we improve?

- Ion Source
- Low Energy Beam Transport (LEBT)
- Accelerator (Cyclotron)
 - Injection
 - Acceleration
 - Extraction \bullet

We must consider space charge at every step!

LEBT

Low Energy Beam

accelerator

Transport = Connection

Trajectory equations with linear space-charge

M. Reiser, Wiley-VCH 2008

Trajectory Equations:

$$x'' + \kappa_{x0}x - \frac{2K}{x_m(x_m + y_m)}x = 0$$
$$y'' + \kappa_{y0}y - \frac{2K}{y_m(x_m + y_m)}y = 0$$

 $\kappa_{x0}, \kappa_{y0} \cdots$ focusing functions

Envelope equations:

$$x''_{m} + \kappa_{x0}x_{m} - \frac{2K}{x_{m} + y_{m}} - \frac{\epsilon_{x}^{2}}{x_{m}^{3}} = 0$$
$$y''_{m} + \kappa_{y0}y_{m} - \frac{2K}{x_{m} + y_{m}} - \frac{\epsilon_{y}^{2}}{y_{m}^{3}} = 0$$

 $x_m, y_m \cdots$ beam edge

Generalized Perveance:

$$K = \frac{q\mathbf{I} \cdot (1 - \gamma^2 \mathbf{f_e})}{2\pi\epsilon_0 m_0 c^3 \gamma^3 \beta^3}$$

There are "particle knobs" to turn

Generalized Perveance:

 $K = \frac{q\mathbf{I} \cdot (1 - \gamma^2 \mathbf{f_e})}{2\pi\epsilon_0 m_0 c^3 \gamma^3 \beta^3}$

a measure for space-charge

If we want to increase I, we can change m and E to keep The perveance as low as possible

Space-charge makes injection difficult

- This becomes most problematic in the spiral inflector
- And Low Energy Beam Transport

Space-charge makes injection difficult

- This becomes most problematic in the spiral inflector
- And Low Energy Beam Transport
- Let's increase energy

Space-charge makes injection difficult

- This becomes most problematic in the spiral inflector
- And Low Energy Beam Transport
- Let's increase energy ... and change the ion?

Innovation #1: H₂⁺ instead of protons

- Two units of charge for one!
- Remove electron by stripping

Physics ∞ **Technology**

Note: • 5 mA H_2^+ = 10 mA p^+

Innovation #1: H₂⁺ instead of protons

- Two units of charge for one!
- Remove electron by stripping
 → get two protons per H₂⁺
- Helps with Injection
- Helps with Low Energy Beam Transport
- And there are additional exciting ways to exploit this!

Innovation #2: H_2^+ ion source (MIST-1) \rightarrow commissioned at 25% power at MIT (PSFC)

Cup

- Filament-driven multicusp ion source
- > 1 mA of H_{2}^{+}
- 80% purity
- High quality beam emittance: 0.05 π -mm-mrad (RMS, norm.)
- Now ramping up to 100% power

Axani, DW et al. RSI (2016) https://aip.scitation.org/doi/10.1063/1.4932395 DW et al., AIP Conf. Proc. (2017) https://arxiv.org/abs/1811.01868 DW et al. RSI (2021) https://arxiv.org/abs/2008.12292

43

What building blocks can we improve?

...to provide 10 mA here

What building blocks can we improve?

Extraction from a compact cyclotron

To run and perform routine maintenance, beam loss must be minimized (< 200 W)

To run and perform routine maintenance, beam loss must be minimized (< 200 W)

- Safety limit adopted from PSI:
 200 W or ~1 in 10k particles at 60 MeV/amu
- Otherwise there is too much activation

V

Radius (mm)

Three ways to maximize the turn separation and minimize losses

- Maximize Energy Gain/turn 250 kV V_{dee}, 4 Dees (8 gaps)
 → almost 2 MeV/turn
- Excite Precession through Resonance
- Beam Dynamics: Vortex Motion
 - Vortex-like curling up of the beam into a circle in longitudinal-transverse space
 - Only happens in isochronous cyclotrons
 - Beam needs to be well matched

What building blocks can we improve?

What building blocks can we improve?

Vortex motion – OPAL Simulations for PSI Injector II

Yang et al. PRSTAB (2010) https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.13.064201

Vortex Motion - The "Intuitive" Picture

Lorentz force: $\mathbf{F} = q \cdot (\mathbf{v} \times \mathbf{B}_{ext}) + q \cdot \mathbf{E}_{self}$ E x B drift: $\mathbf{v}_E = \frac{\mathbf{E}_{self} \times \mathbf{B}_{ext}}{\mathbf{B}_{ext}^2}$

Vortex Motion in the IsoDAR 60 MeV/amu cyclotron

Optimize phase, RF voltage, cavity shape, collimator placement

- Phase: -5°, V = 70-240kV
- Collimate Halo \rightarrow ~30% loss
- 98 W on septum (~1e-4 rel.)

400

300

200

100

-100

-200

-300

-400 -300 -200 -100

y (mm)

Histogram of the Beam Power (0.5 mm Bins)

DW et al., New J. Phys. (2022) <u>https://doi.org/10.1088/1367-2630/ac5001</u>

Beam can be extracted with good quality

• Minimal losses at 60 MeV/amu: < 100 Watt!

- RMS Size:
 - Radial: 7.5 mm
 - Longitudinal: 11 mm
 - Vertical: 1.9 mm
- RMS, normalized emittance:
 - vertical: 0.44 mm-mrad
 - Radial: 3.8 mm-mrad
- Longitudinal emittance:
 - 0.1 MeV-deg

But do we trust the simulations?

- Three important benchmark studies:
 - LEBT
 - Spiral Inflector
 - Cyclotron

In order to have the highest realism, PIC codes are necessary! → OPAL and WARP

But do we trust the simulations? Yes!

- Three important benchmark studies:
 - LEBT WARP excellent agreement with measurements ✓ DW et al. JINST (2015) <u>arXiv:1508.03850</u>
 - Spiral Inflector New OPAL module, benchmarked against theory and experiment ✓

DW et al. Phys. Rev. AB (2017) https://arxiv.org/abs/1612.09018

 Cyclotron – OPAL has been heavily benchmarked against PSI and other experiments ✓

Yang et al. PRSTAB (2010) PhysRevSTAB.13.064201

Adelmann et al. The OPAL Code (2019) https://arxiv.org/abs/1905.06654

What building blocks can we improve?

What building blocks can we improve?

Now let's jump to here: Better Bunching

Only a narrow phase window can be populated

<u>Phase Acceptance</u> Window in RF wave space that can safely be populated

How can we improve phase acceptance and make our system more compact? \rightarrow RFQ Bunching

Caveat: Because of the strong bunching and tight focusing, the bunches begin to spread quickly after the RFQ → Direct Injection

Innovation #5: RFQ-DIP

• Radio Frequency Quadrupole – Direct Injection Project

DW et al. **RSI** (2016) <u>https://aip.scitation.org/doi/abs/10.1063/1.4935753</u> DW et al. **NIMA** (2018) <u>https://arxiv.org/abs/1807.03759</u> DW et al. **JACoW** IPAC2021-TUXB07 (2021) <u>https://inspirehep.net/literature/1962316</u>

Innovation #5: RFQ-DIP

• Radio Frequency Quadrupole – Direct Injection Project

DW et al. **RSI** (2016) <u>https://aip.scitation.org/doi/abs/10.1063/1.4935753</u> DW et al. **NIMA** (2018) <u>https://arxiv.org/abs/1807.03759</u> DW et al. **JACoW** IPAC2021-TUXB07 (2021) <u>https://inspirehep.net/literature/1962316</u>

RFQ General Principle

Beam

 $\longleftarrow L = \beta \lambda \longrightarrow$

$$V(t) = V_{\max} \cdot \cos(\omega_{RF} \cdot t - \Phi_S)$$

- Continuous focusing like in a series of alternating F/D Electrostatic quadrupoles
- Wiggles lead to acceleration and bunching (RF bunching similar to cyclotron)
- Same frequency as cyclotron (32.8 MHz)

Particles are continuously focused transversally, while being bunched longitudinally

Highly accurate particle in cell (PIC) simulations using well-established WARP code Cave: Older simulation, not a well-matched beam!

Split-coaxial RFQ bunches the beam at 32.8 MHz

Elements	Unit	Design pa	arameters
Frequency	MHz	32.8	
Particle	A/q	H ₂ ⁺ (2)	arameters
Length	mm	1378.69	
No. of cells		58	or or other
Transmission rate	%	97.27	×
Beam energy	keV	$15 \rightarrow 70$	
Input Trans. emit (rms, norm)	mm-mrad	0.25	
Trans. emittance (rms, norm)	mm-mrad	0.25	
Long. emittance (rms)	keV-deg	30	
Vane voltage	kV	20.14	
min. vane-tip aperture	mm	6.83	
vane-tip curvature	mm	9.30	
r ₀ , mid-cell aperture	mm	9.30	L DEO
Octupole term		0.070	split-Coaxial Kro
Power:	kW	< 6	Split-Coaxial RFQ Eigenmode of tank allows low frequency

Technical Design by Bevatech, GmbH, Germany

7 Papers at the IPAC'21 Conference

with small diameter

Split-coaxial RFQ bunches the beam at 32.8 MHz

Elements	Unit	Design pa	arameters
Frequency	MHz	32.8	
Particle	A/q	H_2^+ (2)	i i i i i i i i i i i i i i i i i i i
Length	mm	1378.69	arameters 000
No. of cells		58	
Transmission rate	%	97.27	<
Beam energy	keV	$15 \rightarrow 70$	
Input Trans. emit (rms, norm)	mm-mrad	0.25	
Trans. emittance (rms, norm)	mm-mrad	0.25	
Long. emittance (rms)	keV-deg	30	
Vane voltage	kV	20.14	
min. vane-tip aperture	mm	6.83	
vane-tip curvature	mm	9.30	
r ₀ , mid-cell aperture	mm	9.30	L DEO
Octupole term		0.070	split-Coaxial Krog
Power:	kW	< 6	<u>Split-Coaxial RFQ</u> Eigenmode of tank allows low frequency

Technical Design by Bevatech, GmbH, Germany

7 Papers at the IPAC'21 Conference

with small diameter

RFQ-DIP Prototype

Radiofrequency Quadrupole – Direct Injection Project

- Ion Source (MIST-1) S. Axani, J. Smolsky, L. Waites, P. Weigel
- Mini-ES-LEBT (Chop/Steer) L. Waites
- RFQ JB. Bahng, D. Koser, M. Sangroula
- Injection (re-focusing) P. Weigel
- 1 MeV/amu test cyclotron
- Diagnostics
- This is the needed experimental verification of RFQ-DIP & vortex motion

MachineLearning() – Why "Surrogate Models"

- Particle accelerator simulations can be complex with large sets of input parameters
- Optimization requires repeated evaluation of points in parameterhyperspace.
- Surrogate model: train neural net on sparse set of points in this hyperspace
- Evaluation of surrogate model is orders of magnitude faster than original simulation
 - Optimization
 - Real-Time Feedback

Image: A. Edelen et al. **PRAB** 23, 044601 (2020)

MachineLearning() - RFQ

Koser et al. Front. Phys. (2022) https://arxiv.org/abs/2112.02579
MachineLearning() - RFQ

- Excellent results for Twiss parameters
- Bodes well for tuning assistant
- Challenges with RFQ mechanical design prediction
- Interesting avenue of research!
- Can already be used to restrict parameter space for optimization

Wishlist for IsoDAR – Use Surrogate Models for

- Optimizing the LEBT and matching of the beam to the RFQ
 - Test-problem
 - Have decent solution for comparison, few parameters clear goal.
- RFQ Optimization and beam prediction </br>
- Optimizing spiral inflector and central region
 - Larger set of parameters (SI voltage, tilt, gap, focusing, RF phases, angles...)
 - Somewhat involved process (generate CAD model, FEM for fields, run in OPAL...)
- Full cyclotron optimization and uncertainty quantification \checkmark

https://arxiv.org/abs/2103.09352

• Add together into start-to-end model for "Virtual Accelerator" for assistance during commissioning and tuning at run-time.

What building blocks can we improve?

What building blocks can we improve?

Coming soon to a cavern near you! In South Korea

Outline

- Original Motivation: IsoDAR neutrino physics
 In a few years this will yield very exciting particle physics
- Cyclotrons "101"
- The physics challenges of high intensity beams
 → How we are changing the game
- More Applications:
 - Medical Isotopes, Materials, ... I will cover this now
 - Multi-Megawatt beams for Particle Physics and ADS ... ask me later

IsoDAR can produce relatively rare medical isotopes

- Few 60 MeV/amu accelerators,
 - On market machines < 1 mA
 - Lab-based accelerators are not at dedicated facilities
 - Our cyclotons can be built by consortia of hospitals
- There is real need for...
 - ⁶⁸Ge/⁶⁸Ga: PET isotope
 - ²²⁵Ac: Alpha emitter

IsoDAR will produce 10 mA @ 60 MeV... Can isotope targets handle that?

- No, at least not at the moment
- But H₂⁺ gives another option... Split the beam between many targets

split internally...

Or split externally

But wait, there's more!

- Exploring medical isotope production with other ions with m/q = 2
- Innovations are upstream of ~1.5 MeV/amu
- Same design works from 1 to 60 MeV/amu ... A family of cyclotrons!
 → A wide range of isotopes...

Also \rightarrow Local facilities for particle physics!

Intensity frontier physics located at universities can be a game-changer for the field.

Ongoing project: A design "kit" for facilities,

e.g., something like...

Test stand for Detectors in high Neutron environments

> DAR flux for Coherent Scattering...

Particle physics needs/concepts

_I already appearing on arXiv,

But lacking a source to run!

Specialized Z'

and ALP searches

... Other examples

Snowmass'21 - AF02 High Power Cyclotron Working Group Report: https://arxiv.org/abs/2203.07919 (lots of PSI input!)

In Summary...

Planned milestones in next 10 years

- Machine Learning:
 - Surrogate Model for ion source/LEBT tuning 2022
 - First demonstration of ML-assisted RFQ design 2023
 - Followed by new ML developments and proofs of principle.
- Machines:
 - 3.5 MeV machine first-of-its-kind complete prototype 2025 (Above-ground test machine for IsoDAR running, isotopes)
 - "Kit" for design for any energy from 1 to 60 MeV 2025
 - IsoDAR 60 MeV Cyclotron completed by 2027
- Particle Physics:
 - IsoDAR, definitive experiment in exotic neutrino sector 2032
- Many more applications to follow!
 - CP-violation, ADS, materials, isotopes...

References

- IsoDAR@Yemilab CDR: IsoDAR Collaboration **arXiv** (2021) <u>arxiv:2110.10635</u>
- IsoDAR@Yemilab Physics: J. Spitz et al. PRD (2022) arxiv:2111.09480
- Ion Source: Winklehner et al. RSI (2021) <u>https://arxiv.org/abs/2008.12292</u>
- RFQ-DIP: D. Winklehner et al. RSI (2016) <u>https://aip.scitation.org/doi/abs/10.1063/1.4935753</u>
- RFQ-DIP: D. Winklehner et al. NIMA (2018) https://arxiv.org/abs/1807.03759
- ML for RFQ: D. Koser et al. (submitted to Frontiers, 2022) <u>https://arxiv.org/abs/2112.02579</u>
- Spiral Inflector: D. Winklehner et al. PRAB (2017) <u>https://arxiv.org/abs/1612.09018</u>
- Cyclotron: Winklehner et al. New Journ. Phys. (2022) <u>https://doi.org/10.1088/1367-2630/ac5001</u>
- Isotopes: J. Alonso et al. Nature (2019) https://www.nature.com/articles/s42254-019-0095-6
- Isotopes: L. Waites et al. EJNMMI (2020) <u>https://doi.org/10.1186/s41181-020-0090-3</u>
- Target, ⁸Li yield: A. Bungau et al. arXiv (2018) <u>https://arxiv.org/abs/1805.00410</u>
- Target, shielding: A. Bungau et al. arXiv (2019) https://arxiv.org/abs/1909.08009
- First experimental tests: Winklehner et al. JINST (2015) <u>arXiv:1508.03850</u>
- Yang et al. PRSTAB (2010) PhysRevSTAB.13.064201
- The OPAL Code: Adelmann et al. arXiv (2019) https://arxiv.org/abs/1905.06654
- High-Power Cyclotron Report: Winklehner et al. arXiv (2022) <u>https://arxiv.org/abs/2203.07919</u>