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Università di Roma La Sapienza e INFN
Roma, Italy

“As far as the laws of mathematics refer to reality, they are not certain,

© GdA, LTP/PSI 05/05/22, 1/71

http://www.roma1.infn.it/~dagos/


Measurements, uncertainties
and probabilistic inference/forecasting

Giulio D’Agostini
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What is measurement?
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What is measurement?
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What is measurement?

Higgs → γγ (2012)

Two-photon invariant mass
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What is measurement?

ATLAS Experiment at LHC (CERN, Geneva)
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What is measurement?

ATLAS Experiment at LHC [ length: 46m; � 25m ]

≈ 3000 km cables

≈ 7000 tonnes ≈ 100millions electronic channels
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What is measurement?

Two flashes of ‘light’ (2 γ’s) in a ‘noisy’ environment.
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What is measurement?

Two flashes of ‘light’ (2 γ’s) in a ‘noisy’ environment.
Higgs → γγ?
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What is measurement?

Two flashes of ‘light’ (2 γ’s) in a ‘noisy’ environment.
Higgs → γγ? Probably not. . .
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What is measurement?

Higgs → γγ

⇒
{

Mass value
Production rate
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What is measurement?

Higgs → γγ

⇒
{

Mass value
Production rate
(with uncertainties)
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What is measurement?

Higgs → γγ

⇒
{

Mass value
Production rate
(with uncertainties)

Quite indirect measurements of something we do not “see”!
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Can we “see” physics quantities?

But, can we see our mass?
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Can we “see” physics quantities?

. . . or a voltage?
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Can we “see” physics quantities?

. . . or our blood pressure?
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Can we “see” physics quantities?

Certainly not!
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Can we “see” physics quantities?

Certainly not!

. . . although for some quantities we can have

a ‘vivid impression’ (in the David Hume’s sense)
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Measuring a mass on a scale

Equilibrium:

mg − k∆x = 0

∆x → θ → scale reading

(with ‘g ’ gravitational acceleration; ‘k’ spring constant.)
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Measuring a mass on a scale

Equilibrium:

mg − k∆x = 0

∆x → θ → scale reading

(with ‘g ’ gravitational acceleration; ‘k’ spring constant.)

From the reading to the value of the mass:

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁

◮ Position is usually not at “R♁” from the Earth center;
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Dependence on ‘g ’: g
?
=

GM♁

R2
♁

◮ Position is usually not at “R♁” from the Earth center;

◮ Earth not spherical. . .

◮ . . . not even ellipsoidal. . .
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scale reading −−−−−−−−−−−−−−−−→
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◮ Earth not spherical. . .

◮ . . . not even ellipsoidal. . .

◮ . . . and not even homogeneous.

◮ Moreover we have to consider centrifugal effects
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁

◮ Position is usually not at “R♁” from the Earth center;

◮ Earth not spherical. . .

◮ . . . not even ellipsoidal. . .

◮ . . . and not even homogeneous.

◮ Moreover we have to consider centrifugal effects

◮ . . . and even the effect from the Moon
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁

◮ Position is usually not at “R♁” from the Earth center;

◮ Earth not spherical. . .

◮ . . . not even ellipsoidal. . .

◮ . . . and not even homogeneous.

◮ Moreover we have to consider centrifugal effects

◮ . . . and even the effect from the Moon

Certainly not to watch our weight
But think about it!
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .

∆x→ θ → scale reading:

◮ left to your imagination. . .
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .

∆x→ θ → scale reading:

◮ left to your imagination. . .

+ randomic effects:

◮ stopping position of damped oscillation;

◮ variability of all quantities of influence (in the ISO-GUM
sense);

◮ reading of analog scale.
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .

∆x→ θ → scale reading:

◮ left to your imagination. . .

+ randomic effects:

◮ stopping position of damped oscillation;

◮ variability of all quantities of influence (in the ISO-GUM
sense);

◮ reading of analog scale.
⇒ m ??
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Mass −→ Reading

mass

reading
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Mass −→ Reading

mass

reading

?
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Mass −→ Reading

mass

reading

M
o
d
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l

?
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Mass −→ Reading
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Reading −→ ‘true’ mass

mass

reading
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Reading −→ ‘true’ mass

mass

reading

M
o
d
e
l

?
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Sources of uncertainties (from ISO GUM)

1 incomplete definition of the measurand
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Sources of uncertainties (from ISO GUM)

1 incomplete definition of the measurand

→ g
→where?

→inertial effects subtracted?
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Sources of uncertainties (from ISO GUM)

1 incomplete definition of the measurand

→ g
→where?

→inertial effects subtracted?

2 imperfect realization of the definition of the measurand
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Sources of uncertainties (from ISO GUM)

1 incomplete definition of the measurand

→ g
→where?

→inertial effects subtracted?

2 imperfect realization of the definition of the measurand

→ scattering on neutron

→how to realize a neutron target?
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Sources of uncertainties (from ISO GUM)

1 incomplete definition of the measurand

→ g
→where?

→inertial effects subtracted?

2 imperfect realization of the definition of the measurand

→ scattering on neutron

→how to realize a neutron target?

3 non-representative sampling — the sample measured may

not represent the measurand;
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Sources of uncertainties (from ISO GUM)

1 incomplete definition of the measurand

→ g
→where?

→inertial effects subtracted?

2 imperfect realization of the definition of the measurand

→ scattering on neutron

→how to realize a neutron target?

3 non-representative sampling — the sample measured may

not represent the measurand;

4 inadequate knowledge of the effects of environmental

conditions on the measurement, or imperfect

measurement of environmental conditions;
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Sources of uncertainties (from ISO GUM)

1 incomplete definition of the measurand

→ g
→where?

→inertial effects subtracted?

2 imperfect realization of the definition of the measurand

→ scattering on neutron

→how to realize a neutron target?

3 non-representative sampling — the sample measured may

not represent the measurand;

4 inadequate knowledge of the effects of environmental

conditions on the measurement, or imperfect

measurement of environmental conditions;

5 personal bias in reading analogue instruments;
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Sources of uncertainties (from ISO GUM)

6 finite instrument resolution or discrimination threshold;
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Sources of uncertainties (from ISO GUM)

6 finite instrument resolution or discrimination threshold;

7 inexact values of measurement standards and reference

materials;
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Sources of uncertainties (from ISO GUM)

6 finite instrument resolution or discrimination threshold;

7 inexact values of measurement standards and reference

materials;

8 inexact values of constants and other parameters obtained

from external sources and used in the data-reduction

algorithm;
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Sources of uncertainties (from ISO GUM)

6 finite instrument resolution or discrimination threshold;

7 inexact values of measurement standards and reference

materials;

8 inexact values of constants and other parameters obtained

from external sources and used in the data-reduction

algorithm;

9 approximations and assumptions incorporated in the

measurement method and procedure;

© GdA, LTP/PSI 05/05/22, 11/71



Sources of uncertainties (from ISO GUM)

6 finite instrument resolution or discrimination threshold;

7 inexact values of measurement standards and reference

materials;

8 inexact values of constants and other parameters obtained

from external sources and used in the data-reduction

algorithm;

9 approximations and assumptions incorporated in the

measurement method and procedure;

10 variations in repeated observations of the measurand

under apparently identical conditions.
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Sources of uncertainties (from ISO GUM)

6 finite instrument resolution or discrimination threshold;

7 inexact values of measurement standards and reference

materials;

8 inexact values of constants and other parameters obtained

from external sources and used in the data-reduction

algorithm;

9 approximations and assumptions incorporated in the

measurement method and procedure;

10 variations in repeated observations of the measurand

under apparently identical conditions.

Note
◮ Sources not necessarily independent

◮ In particular, sources 1-9 may contribute to 10
(e.g. not-monitored electric fluctuations)
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ISO dictionary

ISO: International Organization for Standardization
GUM: Guides to the expression of Uncertainty in Measurement
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ISO dictionary

ISO: International Organization for Standardization
GUM: Guides to the expression of Uncertainty in Measurement

Measurand: “particular quantity subject to measurement.”
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ISO dictionary

ISO: International Organization for Standardization
GUM: Guides to the expression of Uncertainty in Measurement

Measurand: “particular quantity subject to measurement.”

True value: “a value compatible with the definition of a given
particular quantity.”
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ISO dictionary

ISO: International Organization for Standardization
GUM: Guides to the expression of Uncertainty in Measurement

Measurand: “particular quantity subject to measurement.”

True value: “a value compatible with the definition of a given
particular quantity.”

Result of a measurement: “value attributed to a measurand,
obtained by measurement.”
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ISO dictionary

ISO: International Organization for Standardization
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particular quantity.”

Result of a measurement: “value attributed to a measurand,
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ISO dictionary

ISO: International Organization for Standardization
GUM: Guides to the expression of Uncertainty in Measurement

Measurand: “particular quantity subject to measurement.”

True value: “a value compatible with the definition of a given
particular quantity.”

Result of a measurement: “value attributed to a measurand,
obtained by measurement.”

Uncertainty: “a parameter, associated with the result of a
measurement, that characterizes the dispersion of the
values that could reasonably be attributed to the
measurand.”

Error: “the result of a measurement minus a true value of
the measurand.”
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ISO dictionary

ISO: International Organization for Standardization
GUM: Guides to the expression of Uncertainty in Measurement

Measurand: “particular quantity subject to measurement.”

True value: “a value compatible with the definition of a given
particular quantity.”

Result of a measurement: “value attributed to a measurand,
obtained by measurement.”

Uncertainty: “a parameter, associated with the result of a
measurement, that characterizes the dispersion of the
values that could reasonably be attributed to the
measurand.”

Error: “the result of a measurement minus a true value of
the measurand.”

Error and uncertainty are not synonyms!
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Observation → value of a quantity

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m
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Observations → hypotheses

This problem occurs not only “determining”
the value of a physical quantity.
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Observations → hypotheses

This problem occurs not only “determining”
the value of a physical quantity.

◮ Experimental observation (‘data’) → responsible cause.
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Observations → hypotheses

This problem occurs not only “determining”
the value of a physical quantity.

◮ Experimental observation (‘data’) → responsible cause.

(But logically no substantial difference.)
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Causes → effects

The same apparent cause might produce several,different effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.
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Causes → effects

The same apparent cause might produce several,different effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.

E2 ⇒ {C1, C2, C3}?
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of causes,
and are most interesting of all for their scientific applications.
I play at écarté with a gentleman whom I know to be perfectly
honest. What is the chance that he turns up the king? It is
1/8. This is a problem of the probability of effects.
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of causes,
and are most interesting of all for their scientific applications.
I play at écarté with a gentleman whom I know to be perfectly
honest. What is the chance that he turns up the king? It is
1/8. This is a problem of the probability of effects.

I play with a gentleman whom I do not know. He has dealt
ten times, and he has turned the king up six times. What is
the chance that he is a sharper? This is a problem in the
probability of causes. It may be said that it is the essential
problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of causes,
and are most interesting of all for their scientific applications.
I play at écarté with a gentleman whom I know to be perfectly
honest. What is the chance that he turns up the king? It is
1/8. This is a problem of the probability of effects.

I play with a gentleman whom I do not know. He has dealt
ten times, and he has turned the king up six times. What is
the chance that he is a sharper? This is a problem in the
probability of causes. It may be said that it is the essential
problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)

Why we (or most of us) have not been taught how to tackle
this kind of problems?
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A minimalist though not trival problem of the kind

An example easy to understand:

◮ two causes;

◮ two effects;
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A minimalist though not trival problem of the kind

An example easy to understand:

◮ two causes;

◮ two effects;

◮ medical diagnostics helps to clarify the issues:
◮ easier to reach intuitive answers
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A minimalist though not trival problem of the kind

An example easy to understand:

◮ two causes;

◮ two effects;

◮ medical diagnostics helps to clarify the issues:
◮ easier to reach intuitive answers
◮ . . . although if someone might have fallacious intuitions
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A minimalist though not trival problem of the kind

An example easy to understand:

◮ two causes;

◮ two effects;

◮ medical diagnostics helps to clarify the issues:
◮ easier to reach intuitive answers
◮ . . . although if someone might have fallacious intuitions
⇒ a formal guide helps us avoiding errors

⇒ logics of the uncertain (theory of probabilities)
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AIDS test

An Italian citizen is selected at random
to undergo an AIDS test.
→ Performance of clinical trial is not perfect, as customary:

P(Pos |HIV) = 100%

P(Pos |HIV) = 0.2%

P(Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Not infected) E2 = Negative
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AIDS test

An Italian citizen is selected at random
to undergo an AIDS test.
→ Performance of clinical trial is not perfect, as customary:

P(Pos |HIV) = 100%

P(Pos |HIV) = 0.2%

P(Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Not infected) E2 = Negative

Result: ⇒ Positive
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AIDS test
An Italian citizen is selected at random
to undergo an AIDS test.
→ Performance of clinical trial is not perfect, as customary:

P(Pos |HIV) = 100%

P(Pos |HIV) = 0.2%

P(Neg |HIV) = 99.8%

? H1=’HIV’ (Infected) E1 = Positive

? H2=’HIV’ (Not infected) E2 = Negative

Result: ⇒ Positive

Infected or not infected?
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AIDS test: how to interpret the result?

Being P(Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say?

◮ ”It is practically impossible that the person is not infected,
since it was practically impossible that a non infected person
would result positive”
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AIDS test: how to interpret the result?

Being P(Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

◮ ”It is practically impossible that the person is not infected,
since it was practically impossible that a non infected person
would result positive”

◮ “There is only 0.2% probability that the person has no HIV”

◮ “We are 99.8% confident that the person is infected”

◮ “The hypothesis H1=’no HIV’ is ruled out with 99.8% C.L.”

?
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AIDS test: how to interpret the result?

Being P(Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

◮ ”It is practically impossible that the person is not infected,
since it was practically impossible that a non infected person
would result positive”
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AIDS test: how to interpret the result?

Being P(Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

◮ ”It is practically impossible that the person is not infected,
since it was practically impossible that a non infected person
would result positive”

◮ “There is only 0.2% probability that the person has no HIV”

◮ “We are 99.8% confident that the person is infected”

◮ “The hypothesis H1=’no HIV’ is ruled out with 99.8% C.L.”

NO

Instead, P(HIV |Pos, random Italian) ≈ 45%

(We will learn in the sequel how to evaluate it correctly)
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AIDS test: how to interpret the result?

Being P(Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

◮ ”It is practically impossible that the person is not infected,
since it was practically impossible that a non infected person
would result positive”

◮ “There is only 0.2% probability that the person has no HIV”

◮ “We are 99.8% confident that the person is infected”

◮ “The hypothesis H1=’no HIV’ is ruled out with 99.8% C.L.”

NO

Instead, P(HIV |Pos, random Italian) ≈ 45%

⇒ Serious mistake! (not just 99.8% instead of 98.3% or so)
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AIDS test: how to interpret the result?

Being P(Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

◮ ”It is practically impossible that the person is not infected,
since it was practically impossible that a non infected person
would result positive”

◮ “There is only 0.2% probability that the person has no HIV”

◮ “We are 99.8% confident that the person is infected”

◮ “The hypothesis H1=’no HIV’ is ruled out with 99.8% C.L.”

NO

Instead, P(HIV |Pos, random Italian) ≈ 45%

⇒ Serious mistake! (not just 99.8% instead of 98.3% or so) ⇒
. . . from which bad decisions might follow!
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AIDS test

???
Where is the problem?
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The previous statements, although dealing with probabilistic
issues, are not ground on probability theory

. . . and in these issues intuition can be fallacious!
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AIDS test

???
Where is the problem?

The previous statements, although dealing with probabilistic
issues, are not ground on probability theory

. . . and in these issues intuition can be fallacious!

⇒ A sound formal guidance can rescue us
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P(A |B)↔ P(B |A)
Pay attention not to arbitrary revert conditional probabilities:

In general P(A |B) 6= P(B |A)
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◮ P(Positive |HIV ) 6= P(HIV |Positive)
◮ P(Win |Play) 6= P(Play |Win) [Lotto]
◮ P(Pregnant |Woman) 6= P(Woman |Pregnant)
In particular

◮ A cause might produce a given effect with very low
probability, and nevertheless could be the most probable
cause of that effect
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◮ A cause might produce a given effect with very low
probability, and nevertheless could be the most probable
cause of that effect, often the only one!

© GdA, LTP/PSI 05/05/22, 21/71



P(A |B)↔ P(B |A)
Pay attention not to arbitrary revert conditional probabilities:

In general P(A |B) 6= P(B |A)
◮ P(Positive |HIV ) 6= P(HIV |Positive)
◮ P(Win |Play) 6= P(Play |Win) [Lotto]
◮ P(Pregnant |Woman) 6= P(Woman |Pregnant)
In particular

◮ A cause might produce a given effect with very low
probability, and nevertheless could be the most probable
cause of that effect, often the only one!

In particular

P(E |H) ≪ 1 does not imply P(H |E ) ≪ 1
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P(A |B)↔ P(B |A)
Pay attention not to arbitrary revert conditional probabilities:

In general P(A |B) 6= P(B |A)
◮ P(Positive |HIV ) 6= P(HIV |Positive)
◮ P(Win |Play) 6= P(Play |Win) [Lotto]
◮ P(Pregnant |Woman) 6= P(Woman |Pregnant)
In particular

◮ A cause might produce a given effect with very low
probability, and nevertheless could be the most probable
cause of that effect, often the only one!

In particular

P(E |H) ≪ 1 does not imply P(H |E ) ≪ 1

( and ‘hence’ P(H |E ) ≈ 1 )

⇒ Prosecutor’s fallacy
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P(A |B)↔ P(B |A)
Pay attention not to arbitrary revert conditional probabilities:

In general P(A |B) 6= P(B |A)
◮ P(Positive |HIV ) 6= P(HIV |Positive)
◮ P(Win |Play) 6= P(Play |Win) [Lotto]
◮ P(Pregnant |Woman) 6= P(Woman |Pregnant)
In particular

◮ A cause might produce a given effect with very low
probability, and nevertheless could be the most probable
cause of that effect, often the only one!

In particular

P(E |H) ≪ 1 does not imply P(H |E ) ≪ 1

( and ‘hence’ P(H |E ) ≈ 1 )

⇒ Prosecutor’s fallacy
⇒ Misunderstanding p-values (a related logical mistake)
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→ Probability of causes

“the essential problem of the experimental method”
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From ‘true value’ to observations

x

Μ0

Experimental

response

?

Given µ (exactly known) we are uncertain about x
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From ‘true value’ to observations

x

Μ

Uncertain Μ

Experimental

response

?

Uncertainty about µ makes us more uncertain about x
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental

observation

x0

The observed data is certain: → ‘true value’ uncertain.
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental

observation

x0

The observed data is certain: → ‘true value’ uncertain.

“data uncertainty” ?
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental

observation

x0

The observed data is certain: → ‘true value’ uncertain.

“data uncertainty” ? Data corrupted?
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental

observation

x0

The observed data is certain: → ‘true value’ uncertain.

“data uncertainty” ? Data corrupted?
Even if the data were corrupted, the data were the corrupted
data!! . . .
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. . . and back: Inferring a true value

x

Μ

Which Μ?

Experimental

observation

x0

?

Where does the observed value of x comes from?
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. . . and back: Inferring a true value

x

Μ

x0

?

Inference

We are now uncertain about µ, given x .
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. . . and back: Inferring a true value

x

Μ

x0

Μ given x

x given Μ

Note the symmetry in reasoning.
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Basic rules of probability

1. 0 ≤ P(A | I ) ≤ 1

2. P(Ω | I ) = 1

3. P(A ∪ B | I ) = P(A | I ) + P(B | I ) [ if P(A ∩ B | I ) = ∅ ]

4. P(A ∩ B | I ) = P(A |B , I ) · P(B | I ) = P(B |A, I ) · P(A | I )

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care about ‘re-conditioning’)
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Basic rules of probability

1. 0 ≤ P(A | I ) ≤ 1

2. P(Ω | I ) = 1

3. P(A ∪ B | I ) = P(A | I ) + P(B | I ) [ if P(A ∩ B | I ) = ∅ ]

4. P(A ∩ B | I ) = P(A |B , I ) · P(B | I ) = P(B |A, I ) · P(A | I )

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care about ‘re-conditioning’)

Note: 4. does not define conditional probability.
(Probability is always conditional probability!)

⇒ easily extended to uncertain numbers (‘random variables’)
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Subjective nature of probability

“Since the knowledge may be different with different persons
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence, and thus different
numerical probabilities may be attached to the same event”

© GdA, LTP/PSI 05/05/22, 26/71



Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence, and thus different
numerical probabilities may be attached to the same event”

(Schrödinger, 1947)
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence, and thus different
numerical probabilities may be attached to the same event”

(Schrödinger, 1947)

Probability depends on the status of information of the subject
who evaluates it.
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the probability of an
event’, it is always to be understood: probability with regard
to a certain given state of knowledge”
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(Schrödinger, 1947)
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the probability of an
event’, it is always to be understood: probability with regard
to a certain given state of knowledge”

(Schrödinger, 1947)

P(E ) −→ P(E | Is(t))
where Is(t) is the information available to subject s at time t.

© GdA, LTP/PSI 05/05/22, 27/71



Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploited!
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploited!

(Liberated by a curious ideology that forbids its use)
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A simple, powerful formula
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A simple, powerful formula

P(A |B | I )P(B | I ) = P(B |A, I )P(A | I )
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A simple, powerful formula

Take the courage to use it!
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A simple, powerful formula

It’s easy if you try. . . !
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A simple, powerful formula

[ Bayes Theorem ]
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}.

P(Ci |E ) ∝ P(E |Ci )
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes.

P(Ci |E ) =
P(E |Ci )

∑

j P(E |Cj)
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes. If the various causes
are not equally probable a priory, it is necessary, instead of the
probability of the event given each cause, to use the product of
this probability and the possibility of the cause itself.”

P(Ci |E ) =
P(E |Ci )P(Ci )

∑

j P(E |Cj)P(Cj)
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Laplace’s “Bayes Theorem”
“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes. If the various causes
are not equally probable a priory, it is necessary, instead of the
probability of the event given each cause, to use the product of
this probability and the possibility of the cause itself.”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )

(Philosophical Essai on Probabilities)

[ In general P(E ) =
∑

j P(E |Cj)P(Cj) (weighted average, with
weigths being the probabilities of the conditions) if Cj form a
complete class of hypotheses ]

© GdA, LTP/PSI 05/05/22, 30/71



Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )
∑

j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )
∑

j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.

Note: denominator is just a normalization factor.

⇒ P(Ci |E ) ∝ P(E |Ci )P(Ci )

© GdA, LTP/PSI 05/05/22, 31/71



Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )
∑

j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.

Note: denominator is just a normalization factor.

⇒ P(Ci |E ) ∝ P(E |Ci )P(Ci )

Most convenient way to remember Bayes theorem
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Laplace’s teaching

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]
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P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!

◮ . . . and also how they appear belivable a priori!
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Laplace’s teaching

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!

◮ . . . and also how they appear belivable a priori!

◮ If P(data |Hi ) = 0, it follows P(Hi | data) = 0:
⇒ falsification (the ‘serious’ one) is a corollary

of the theorem, rather than a principle.
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Laplace’s teaching

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!

◮ . . . and also how they appear belivable a priori!

◮ If P(data |Hi ) = 0, it follows P(Hi | data) = 0:
⇒ falsification (the ‘serious’ one) is a corollary

of the theorem, rather than a principle.

◮ There is no conceptual problem with the fact that
P(data |H1)→ 0 (e.g. 10−37), provided the ratio
P(data |H0)/P(data |H1) is not undefined.
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Bayes factor (’likelihood ratio’)

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)
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Bayes factor (’likelihood ratio’)

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

Prob. ratio|posterior = Bayes factor× Prob. ratio|prior

(prior/posterior w.r.t. data)
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Bayes factor (’likelihood ratio’)

P(H0 | data)
P(H1 | data)

=
P(data |H0)

P(data |H1)
× P(H0)

P(H1)

Prob. ratio|posterior = Bayes factor× Prob. ratio|prior

(prior/posterior w.r.t. data)

If H0 and H1 are ‘complementary’, that is H1 = H0, then

posterior odds = Bayes factor× prior odds
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

© GdA, LTP/PSI 05/05/22, 34/71



Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )

”post illa observationes” “ante illa observationes”

(Gauss)
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )

”post illa observationes” “ante illa observationes”

(Gauss)

Arguments used to derive Gaussian distribution

◮ f (µ | {x}) ∝ f ({x} |µ) · f0(µ)
◮ f0(µ) ‘flat’ (all values a priory equally possible)

◮ posterior maximized at µ = x
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum
(Prince of Mathematicians) is a must.

P(Ci | data) =
P(data |Ci )

P(data)
P0(Ci )

”post illa observationes” “ante illa observationes”

(Gauss)

Arguments used to derive Gaussian distribution

◮ f (µ | {x}) ∝ f ({x} |µ) · f0(µ)
◮ f0(µ) ‘flat’ (all values a priory equally possible)

◮ posterior maximized at µ = x

Note: indeed Gauss had also invented the “Bayes Factor”!
(GdA, arXiv:2003.10878 [math.HO])
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Probabilistic inference/prediction

applied to the ‘binomial’ case

Namely the original problem tackled by Laplace and Bayes
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applied to the ‘binomial’ case

Namely the original problem tackled by Laplace and Bayes,
but in modern notation and making use of a graphical model:
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Probabilistic inference/prediction

applied to the ‘binomial’ case

Namely the original problem tackled by Laplace and Bayes,
but in modern notation and making use of a graphical model:

1. draw the graphical model;

2. write down the joint pdf of all variables entering the game;

3. use Bayes theorem in order to condition on what is
known/assumed;

4. marginalize over all variables on which we are not interesting;

5. do somehow the math.
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n independent Bernoulli processes
General case
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n independent Bernoulli processes
General case

Model

p n

x
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n independent Bernoulli processes
General case

Model

p n

x

Joint pdf (omitting background condition I )
→ making use of the chain rule:

f (x , p, n) = f (x | p, n) · f (p, n)
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n independent Bernoulli processes
General case

Model

p n

x

Joint pdf (omitting background condition I )
→ making use of the chain rule:

f (x , p, n) = f (x | p, n) · f (p, n)
= f (x | p, n) · f (p | n) · f (n)
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n independent Bernoulli processes
General case

Model

p n

x

Joint pdf (omitting background condition I )
→ making use of the chain rule:

f (x , p, n) = f (x | p, n) · f (p, n)
= f (x | p, n) · f (p | n) · f (n)
= f (x | p, n) · f (n | p) · f (p)
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n independent Bernoulli processes
General case

Model

p n

x

Joint pdf (omitting background condition I )
→ making use of the chain rule:

f (x , p, n) = f (x | p, n) · f (p, n)
= f (x | p, n) · f (p | n) · f (n)
= f (x | p, n) · f (n | p) · f (p)
= f (x | p, n) · f (p) · f (n)

(n and p are independent)
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n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√

© GdA, LTP/PSI 05/05/22, 37/71



n independent Bernoulli processes
Usual case → n fixed (for the moment)

Model

p n

x

√

Joint pdf

f (x , p | n) = f (x | p, n) · f (p)
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n independent Bernoulli processes
Graphical models of the typical problems

p n

x

√√

→ f (x | n, p)
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n independent Bernoulli processes
Graphical models of the typical problems

p n

x

√√

→ f (x | n, p)

p n

x

√

√ → f (p | n, x)
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n independent Bernoulli processes
Inferring p

p n

x

√

√
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n independent Bernoulli processes
Inferring p

p n

x

√

√

f (p | x , n) =
f (p, x | n)
f (x | n)

© GdA, LTP/PSI 05/05/22, 39/71



n independent Bernoulli processes
Inferring p

p n

x

√

√

f (p | x , n) =
f (p, x | n)
f (x | n)

=
f (x | n, p) · f 0(p)

f (x | n)

© GdA, LTP/PSI 05/05/22, 39/71



n independent Bernoulli processes
Inferring p

p n

x

√

√

f (p | x , n) =
f (p, x | n)
f (x | n)

=
f (x | n, p) · f 0(p)

f (x | n)

=
f (x | n, p) · f 0(p)

∫ 1
0 f (x | n, p) · f 0(p) dp
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n independent Bernoulli processes
Inferring p

p n

x

√

√

f (p | x , n) =
f (p, x | n)
f (x | n)

=
f (x | n, p) · f 0(p)

f (x | n)

=
f (x | n, p) · f 0(p)

∫ 1
0 f (x | n, p) · f 0(p) dp

∝ f (x | n, p) · f 0(p)
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n independent Bernoulli processes
Inferring p

p n

x

√

√

f (p | x , n) =
f (p, x | n)
f (x | n)

=
f (x | n, p) · f 0(p)

f (x | n)

=
f (x | n, p) · f 0(p)

∫ 1
0 f (x | n, p) · f 0(p) dp

∝ f (x | n, p) · f 0(p)
(denominator just normalization!)
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Inferring “Bernoulli’s p”

We just need to make explicit f (x | n, p):

f (x | n, p) =

(

n
x

)

px (1− p)n−x

© GdA, LTP/PSI 05/05/22, 40/71



Inferring “Bernoulli’s p”

We just need to make explicit f (x | n, p):

f (x | n, p) =

(

n
x

)

px (1− p)n−x =
n!

(n − x)! x!
px (1− p)n−x
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Inferring “Bernoulli’s p”

We just need to make explicit f (x | n, p):

f (x | n, p) =

(

n
x

)

px (1− p)n−x =
n!

(n − x)! x!
px (1− p)n−x

We get then, including normalization:

f (p | x , n) =

n!
(n−x)! x! p

x (1− p)n−x f◦(p)
∫ 1
0

n!
(n−x)! x! p

x (1− p)n−x f◦(p) dp
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Inferring “Bernoulli’s p”

We just need to make explicit f (x | n, p):

f (x | n, p) =

(

n
x

)

px (1− p)n−x =
n!

(n − x)! x!
px (1− p)n−x

We get then, including normalization:

f (p | x , n) =

n!
(n−x)! x! p

x (1− p)n−x f◦(p)
∫ 1
0

n!
(n−x)! x! p

x (1− p)n−x f◦(p) dp

=
px (1− p)n−x f◦(p)

∫ 1
0 p

x (1− p)n−x f◦(p) dp
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Inferring “Bernoulli’s p”

We just need to make explicit f (x | n, p):

f (x | n, p) =

(

n
x

)

px (1− p)n−x =
n!

(n − x)! x!
px (1− p)n−x

We get then, including normalization:

f (p | x , n) =

n!
(n−x)! x! p

x (1− p)n−x f◦(p)
∫ 1
0

n!
(n−x)! x! p

x (1− p)n−x f◦(p) dp

=
px (1− p)n−x f◦(p)

∫ 1
0 p

x (1− p)n−x f◦(p) dp

(The binomial coefficient is irrelevant, not depending on p)
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Inferring “Bernoulli’s p”

f (p | x , n) =
px (1− p)n−x f◦(p)

∫ 1
0 p

x (1− p)n−x f◦(p) dp
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Inferring “Bernoulli’s p”

f (p | x , n) =
px (1− p)n−x f◦(p)

∫ 1
0 p

x (1− p)n−x f◦(p) dp

For teaching purposes we start from a uniform prior,
i.e. f◦(p) = 1:

f (p | x , n) =
px (1− p)n−x

∫ 1
0 p

x (1− p)n−x dp
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Inferring “Bernoulli’s p”

f (p | x , n) =
px (1− p)n−x f◦(p)

∫ 1
0 p

x (1− p)n−x f◦(p) dp

For teaching purposes we start from a uniform prior,
i.e. f◦(p) = 1:

f (p | x , n) =
px (1− p)n−x

∫ 1
0 p

x (1− p)n−x dp

◮ The integral at the denominator is the special function “β”
(also defined for real values of x and n).
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Inferring “Bernoulli’s p”

f (p | x , n) =
px (1− p)n−x f◦(p)

∫ 1
0 p

x (1− p)n−x f◦(p) dp

For teaching purposes we start from a uniform prior,
i.e. f◦(p) = 1:

f (p | x , n) =
px (1− p)n−x

∫ 1
0 p

x (1− p)n−x dp

◮ The integral at the denominator is the special function “β”
(also defined for real values of x and n).

◮ In our case these two numbers are integer and the integral
becomes equal to

x! (n − x)!

(n + 1)!
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Inferring “Bernoulli’s p”
Solution for uniform prior

f (p | x , n) =
(n + 1)!

x! (n − x)!
px (1− p)n−x
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Inferring “Bernoulli’s p”
Solution for uniform prior

f (p | x , n) =
(n + 1)!

x! (n − x)!
px (1− p)n−x

= (n + 1) · n!

x! (n − x)!
px (1− p)n−x
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Inferring “Bernoulli’s p”
Solution for uniform prior

f (p | x , n) =
(n + 1)!

x! (n − x)!
px (1− p)n−x

= (n + 1) · n!

x! (n − x)!
px (1− p)n−x
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Inferring “Bernoulli’s p”
Summaries of the posterior distribution

pm =mode(p) =
x

n
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Inferring “Bernoulli’s p”
Summaries of the posterior distribution

pm =mode(p) =
x

n

E(p) =
x + 1

n + 2
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Inferring “Bernoulli’s p”
Summaries of the posterior distribution

pm =mode(p) =
x

n

E(p) =
x + 1

n + 2
“recursive Laplace formula”

(“Laplace’s rule of succession”)

© GdA, LTP/PSI 05/05/22, 43/71



Inferring “Bernoulli’s p”
Summaries of the posterior distribution

pm =mode(p) =
x

n

E(p) =
x + 1

n + 2
“recursive Laplace formula”

(“Laplace’s rule of succession”)

Var(p) =
(x + 1)(n − x + 1)

(n + 3)(n + 2)2

=
x + 1

n + 2

(

n + 2

n + 2
− x + 1

n + 2

)

1

n + 3

= E(p) (1− E(p))
1

n+3
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p,
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

© GdA, LTP/PSI 05/05/22, 44/71



Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

◮ But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

◮ But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.

P(Ei>n | x , n) =

∫ 1

0
P(Ei | p) · f (p | x , n) dp
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

◮ But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.

P(Ei>n | x , n) =

∫ 1

0
P(Ei | p) · f (p | x , n) dp

=

∫ 1

0
p · f (p | x , n) dp
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

◮ But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.

P(Ei>n | x , n) =

∫ 1

0
P(Ei | p) · f (p | x , n) dp

=

∫ 1

0
p · f (p | x , n) dp = E(p) (!!)
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]

◮ What will be the probability of other trials?

P(Ei>n) =??

◮ If we were sure about p, then p would be our probability:

P(Ei | p) = p

◮ But since we are uncertain about it, we have to take into
account all possible values, weighing them with
our degree of belief.

P(Ei>n | x , n) =

∫ 1

0
P(Ei | p) · f (p | x , n) dp

=

∫ 1

0
p · f (p | x , n) dp = E(p) (!!)

E(p) (and not the mode!) is the probability of every ‘future’ event
which is believed to have the same p of the ‘previous’ ones.
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Related recent applications
(with many details, including general introduction to the relevant ideas and methods,
and program samples)

◮ GdA and A. Esposito, Checking individuals and sampling
populations with imperfect tests,
(arXiv:2009.04843 [q-bio.PE])

◮ GdA and A. Esposito, What is the probability that a
vaccinated person is shielded from Covid-19? A Bayesian
MCMC based reanalysis of published data with emphasis
on what should be reported as ’efficacy’,
(arXiv:2102.11022 [stat.AP])
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Inferring the “Bernoulli’s p”
Large number behaviour: summary

When

◮ n large;
◮ x large;
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When
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◮ and (n − x) large
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Inferring the “Bernoulli’s p”
Large number behaviour: summary

When

◮ n large;
◮ x large;
◮ and (n − x) large

(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p ←→ q = 1− p)
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Inferring the “Bernoulli’s p”
Large number behaviour: summary

When

◮ n large;
◮ x large;
◮ and (n − x) large

(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p ←→ q = 1− p),

then

E(p) ≈ x

n
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Inferring the “Bernoulli’s p”
Large number behaviour: summary

When

◮ n large;
◮ x large;
◮ and (n − x) large

(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p ←→ q = 1− p),

then

E(p) ≈ x

n

σ(p) ≈ 1√
n

√

x

n

(

1− x

n

)
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Inferring the “Bernoulli’s p”
Large number behaviour: summary

When

◮ n large;
◮ x large;
◮ and (n − x) large

(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p ←→ q = 1− p),

then

E(p) ≈ x

n

σ(p) ≈ 1√
n

√

x

n

(

1− x

n

)

— f (p | x , n) tends to Gaussian
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Inferring the “Bernoulli’s p”
Large number behaviour: summary

When

◮ n large;
◮ x large;
◮ and (n − x) large

(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p ←→ q = 1− p),

then

E(p) ≈ x

n

σ(p) ≈ 1√
n

√

x

n

(

1− x

n

)

— f (p | x , n) tends to Gaussian,
— a reflection of the Gaussian limit of f (x | p, n)
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Inferring the “Bernoulli’s p”
Large number behaviour: summary

When

◮ n large;
◮ x large;
◮ and (n − x) large

(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p ←→ q = 1− p),

then

E(p) ≈ x

n

σ(p) ≈ 1√
n

√

x

n

(

1− x

n

)

— f (p | x , n) tends to Gaussian,
— a reflection of the Gaussian limit of f (x | p, n)
— The probability of a future events is evaluated

— from the relative frequency of the past events
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Inferring the “Bernoulli’s p”
Large number behaviour: summary

When

◮ n large;
◮ x large;
◮ and (n − x) large

(remember: in the binomial what is ‘success’ and what is ‘failure’

is not absolute: p ←→ q = 1− p),

then

E(p) ≈ x

n

σ(p) ≈ 1√
n

√

x

n

(

1− x

n

)

— f (p | x , n) tends to Gaussian,
— a reflection of the Gaussian limit of f (x | p, n)
— The probability of a future events is evaluated

— from the relative frequency of the past events

— No need of ‘frequentistic definition’ !
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!
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→ Computational barrier
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

→ Computational barrier

Some tricks have been invented.
Here is a very elegant one, particularly suitable useful to infer
Bernoulli’s p, in order to include the prior in an effordable
mathematical way
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

→ Computational barrier

Some tricks have been invented.
Here is a very elegant one, particularly suitable useful to infer
Bernoulli’s p, in order to include the prior in an effordable
mathematical way
◮ imagine that we could express f0(p) in the following form

f0(p) ∝ pa (1− p)b
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

→ Computational barrier

Some tricks have been invented.
Here is a very elegant one, particularly suitable useful to infer
Bernoulli’s p, in order to include the prior in an effordable
mathematical way
◮ imagine that we could express f0(p) in the following form

f0(p) ∝ pa (1− p)b

◮ Then the inference becomes

f (p | x , n) ∝ px (1− p)n−x · pa (1− p)b
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

→ Computational barrier

Some tricks have been invented.
Here is a very elegant one, particularly suitable useful to infer
Bernoulli’s p, in order to include the prior in an effordable
mathematical way
◮ imagine that we could express f0(p) in the following form

f0(p) ∝ pa (1− p)b

◮ Then the inference becomes

f (p | x , n) ∝ px (1− p)n−x · pa (1− p)b

∝ pa+x (1− p)b+(n−x)
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

→ Computational barrier

Some tricks have been invented.
Here is a very elegant one, particularly suitable useful to infer
Bernoulli’s p, in order to include the prior in an effordable
mathematical way
◮ imagine that we could express f0(p) in the following form

f0(p) ∝ pa (1− p)b

◮ Then the inference becomes

f (p | x , n) ∝ px (1− p)n−x · pa (1− p)b

∝ pa+x (1− p)b+(n−x)

∝ pa
′

(1− p)b
′
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Conjugate priors
Indeed, for the binomial problem such a pdf exists.
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β(r , s)
x r−1(1− x)s−1

{

r , s > 0
0 ≤ x ≤ 1

with a = r − 1 and b = s − 1

Beta distribution
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x r−1(1− x)s−1

{

r , s > 0
0 ≤ x ≤ 1

with a = r − 1 and b = s − 1

Beta distribution

The Beta distribution is an example of conjugate prior:

◮ a pdf such that prior and posterior belong to the same family;

◮ its parameters are updated by the the ‘likelihood’.
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with a = r − 1 and b = s − 1

Beta distribution

The Beta distribution is an example of conjugate prior:

◮ a pdf such that prior and posterior belong to the same family;

◮ its parameters are updated by the the ‘likelihood’.

Note:

◮ not all conjugate priors are as flexible as the Beta.
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Conjugate priors
Indeed, for the binomial problem such a pdf exists.
In general, given the generic uncertain number X ,

f (x |Beta(r , s)) = 1

β(r , s)
x r−1(1− x)s−1

{

r , s > 0
0 ≤ x ≤ 1

with a = r − 1 and b = s − 1

Beta distribution

The Beta distribution is an example of conjugate prior:

◮ a pdf such that prior and posterior belong to the same family;

◮ its parameters are updated by the the ‘likelihood’.

Note:

◮ not all conjugate priors are as flexible as the Beta.

(In particular, the Gaussian is self-conjugate,
which is not so great. . . )
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Predictive distribution
Predicting future nr. of successes and future frequences

◮ Imagine we have have got 5 successes in 10 trials.
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◮ Imagine we have have got 5 successes in 10 trials.

◮ Imagine that we want to make another 10 trials:
what is the probability to get 0, 1, . . . , 10 successes?

◮ From the past data (and assuming a flat prior), we ‘know’
that p ≈ 0.5.
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Predictive distribution
Predicting future nr. of successes and future frequences

◮ Imagine we have have got 5 successes in 10 trials.

◮ Imagine that we want to make another 10 trials:
what is the probability to get 0, 1, . . . , 10 successes?

◮ From the past data (and assuming a flat prior), we ‘know’
that p ≈ 0.5.

◮ If we were sure that p was 1/2, then we could simply use
B10, 1/2.
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Predictive distribution
Predicting future nr. of successes and future frequences

◮ Imagine we have have got 5 successes in 10 trials.

◮ Imagine that we want to make another 10 trials:
what is the probability to get 0, 1, . . . , 10 successes?

◮ From the past data (and assuming a flat prior), we ‘know’
that p ≈ 0.5.

◮ If we were sure that p was 1/2, then we could simply use
B10, 1/2.

◮ But we are not sure about it: we need to take into account all
possible values, each weighted by f (p)

© GdA, LTP/PSI 05/05/22, 49/71



Predictive distribution
Predicting future nr. of successes and future frequences

pn0

x0

n1

x1

√ √

√
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Predictive distribution
Predicting future nr. of successes and future frequences

pn0

x0

n1

x1

√ √

√

◮ We need to take into account all possible values of p,
each weighted by how much we believe it, i.e. by f (p)
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Predictive distribution
Predicting future nr. of successes and future frequences

pn0

x0

n1

x1

√ √

√

◮ We need to take into account all possible values of p,
each weighted by how much we believe it, i.e. by f (p)

◮ f (x) =
∫ 1
0 f (x | p) f (p) dp.
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Predictive distribution
Predicting future nr. of successes and future frequences

pn0

x0

n1

x1

√ √

√

◮ We need to take into account all possible values of p,
each weighted by how much we believe it, i.e. by f (p)

◮ f (x) =
∫ 1
0 f (x | p) f (p) dp.

◮ More precisely,

f (x1 | n1, n0, x0) =
∫ 1

0
f (x1 | n1, p) f (p | x0, n0) dp

◮ X1 → f1
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Predictive distribution
Predicting future nr. of successes and future frequences

pn0

x0

n1

x1

√ √

√

◮ We need to take into account all possible values of p,
each weighted by how much we believe it, i.e. by f (p)

◮ f (x) =
∫ 1
0 f (x | p) f (p) dp.

◮ More precisely,

f (x1 | n1, n0, x0) =
∫ 1

0
f (x1 | n1, p) f (p | x0, n0) dp

◮ X1 → f1 (Predicting a future frequency from a past

frequency)
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Predictive distribution
Some examples

f (x1 | n0, x0, n1 = 10) in %

X1
X1
n1

{

x0 = 1
n0 = 2

{

x0 = 10
n0 = 20

{

x0 = 100
n0 = 200

{

x0 = 1000
n0 = 2000

0 0 3.85 0.42 0.12 0.10
1 0.1 6.99 2.29 1.11 0.99
2 0.2 9.44 6.51 4.67 4.42
3 0.3 11.19 12.54 11.88 11.74
4 0.4 12.24 18.07 20.21 20.48
5 0.5 12.59 20.33 24.02 24.55
6 0.6 12.24 18.07 20.21 20.48
7 0.7 11.19 12.54 11.88 11.74
8 0.8 9.44 6.51 4.67 4.42
9 0.9 6.99 2.29 1.11 0.99
10 1 3.84 0.42 0.12 0.10

E(X1) 5 5 5 5
σ[X1] 2.64 1.87 1.62 1.58
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Joint inference and prediction
pn0

x0

n1

x1

√ √

√
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Joint inference and prediction
pn0

x0

n1

x1

√ √

√

In reality the general solution starts from

f (n0, p, n1, x0, x1)
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Joint inference and prediction
pn0

x0

n1

x1

√ √

√

In reality the general solution starts from

f (n0, p, n1, x0, x1)

conditioning on what is ‘known’ (or ‘assumed’):

f (p, x1 | n0, x0, n1) =
f (p, x1, n0, x0, n1)

f (n0, x0, n1)
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Joint inference and prediction
pn0

x0

n1

x1

√ √

√

In reality the general solution starts from

f (n0, p, n1, x0, x1)

conditioning on what is ‘known’ (or ‘assumed’):

f (p, x1 | n0, x0, n1) =
f (p, x1, n0, x0, n1)

f (n0, x0, n1)

∝ f (p, x1, n0, x0, n1)

⇒ The denominator is just a constant.
⇒ Very important observation in order to solve the problem
⇒ numerically or by Monte Carlo methods! (And remember
⇒ that the numerator can be obtained using the chain rule)
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Graphical models
pn0

x0

n1

x1

√ √

√

Terminology:
◮ nodes (observed/unobserved);
◮ child/childred;
◮ parent(s).
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pn0

x0

n1

x1

√ √

√

Terminology:
◮ nodes (observed/unobserved);
◮ child/childred;
◮ parent(s).
◮ An unobserved node without parents needs a prior

(p in this case)
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Graphical models
pn0

x0

n1

x1

√ √

√

Terminology:
◮ nodes (observed/unobserved);
◮ child/childred;
◮ parent(s).
◮ An unobserved node without parents needs a prior

(p in this case)
No dogma or wickedness of the ‘Bayesians’
⇒ just Probability Theory (chain rule).
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Graphical models
pn0

x0

n1

x1

√ √

√

Terminology:
◮ nodes (observed/unobserved);
◮ child/childred;
◮ parent(s).
◮ An unobserved node without parents needs a prior

(p in this case)
No dogma or wickedness of the ‘Bayesians’
⇒ just Probability Theory (chain rule).

Software to analyse it:
◮ instructions which remind the description of the model

by a suitable chain rule;
◮ computation performed by Markov Chain Monte Carlo.
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Joint inference and prediction in JAGS
JAGS: Just Another Gibbs Sampler

(The Gibbs Sampler is an MCMC algorithm,
but the software also uses Metropolis in though cases)

pn0

x0

n1

x1

√ √

√
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Joint inference and prediction in JAGS
JAGS: Just Another Gibbs Sampler

(The Gibbs Sampler is an MCMC algorithm,
but the software also uses Metropolis in though cases)

pn0

x0

n1

x1

√ √

√

Model:

model{

x0 ~ dbin(p, n0)

x1 ~ dbin(p, n1)

p ~ dbeta(1, 1) # flat prior in termes of a Beta

}
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Use of JAGS from R via rjags
(n0 = 20, x0 = 10, n1 = 10)

© GdA, LTP/PSI 05/05/22, 55/71



Use of JAGS from R via rjags
(n0 = 20, x0 = 10, n1 = 10)

p = 0.498± 0.105; x1 = 4.98± 1.86 (10000 samples).
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Use of JAGS from R via rjags
Scatter plot of sampled f (p, x1 | n0, x0, n1)
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Use of JAGS from R via rjags
Scatter plot of sampled f (p, x1 | n0, x0, n1)
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BAT - the Bayesian Analysis Toolkit

A package more suited for Physics analysis (expecially HEP)

https://bat.mpp.mpg.de/
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BAT - the Bayesian Analysis Toolkit

A package more suited for Physics analysis (expecially HEP)

https://bat.mpp.mpg.de/

Presently rewritten in Julia: https://github.com/bat/BAT.jl
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n independent Bernoulli processes
Inferring n

p n

x √

√
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n independent Bernoulli processes
Inferring n

p n

x √

√

Think at a detector having a well known efficiency (ǫ ≡ p)
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x √

√

Think at a detector having a well known efficiency (ǫ ≡ p):

◮ we have recorded x ‘signals’;
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n independent Bernoulli processes
Inferring n

p n

x √

√

Think at a detector having a well known efficiency (ǫ ≡ p):

◮ we have recorded x ‘signals’;

◮ how many particles impinged the detector?
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n independent Bernoulli processes
Inferring n

p n

x √

√

Think at a detector having a well known efficiency (ǫ ≡ p):

◮ we have recorded x ‘signals’;

◮ how many particles impinged the detector? −→ f (n | x , p)?
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n independent Bernoulli processes
Extending the model

Our problem (but in Physics it is often not so simple)

p n

x √

√
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n independent Bernoulli processes
Extending the model

Our problem (but in Physics it is often not so simple)

p n

x √

√

But we need some (usually indirect) knowledge about p
(Usually we do not calculate p from the fraction of white balls!)
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n independent Bernoulli processes
Extending the model

Our problem (but in Physics it is often not so simple)

p n

x √

√

But we need some (usually indirect) knowledge about p
(Usually we do not calculate p from the fraction of white balls!)

p n

x

n0

x0 √

√

√
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n independent Bernoulli processes
Extending the model

Our problem (but in Physics it is often not so simple)

p n

x √

√

But we need some (usually indirect) knowledge about p
(Usually we do not calculate p from the fraction of white balls!)

p n

x

n0

x0 √

√

√

But what is n?
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Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning’.
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Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning’.
◮ When we say “we are uncertain on numbers”,

we do not mean we are uncertain on the numbers

we ‘see’ in our detector, but to ‘other numbers’.
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Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning’.
◮ When we say “we are uncertain on numbers”,

we do not mean we are uncertain on the numbers

we ‘see’ in our detector, but to ‘other numbers’.
◮ Typically n ←→ λ.

Assuming for a while p well known and focusing on ‘n’:

p n

x

λ

√

√
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◮ When we say “we are uncertain on numbers”,

we do not mean we are uncertain on the numbers

we ‘see’ in our detector, but to ‘other numbers’.
◮ Typically n ←→ λ.

Assuming for a while p well known and focusing on ‘n’:

p n

x

λ

√

√

But λ is not really physical
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Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those which have ‘physical meaning’.
◮ When we say “we are uncertain on numbers”,

we do not mean we are uncertain on the numbers

we ‘see’ in our detector, but to ‘other numbers’.
◮ Typically n ←→ λ.

Assuming for a while p well known and focusing on ‘n’:

p n

x

λ

√

√

But λ is not really physical −→ λ = r T
(r : intensity of the Poisson process).
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Extending the model
λ = r · T :

p n

x

λ

Tr

√

√

√
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Extending the model
λ = r · T :

p n

x

λ

Tr

√

√

√

(Dashed arrows used in literature for deterministic links)
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Extending the model
λ = r · T :

p n

x

λ

Tr

√

√

√

(Dashed arrows used in literature for deterministic links)
In JAGS, e.g., lambda <- r * T;
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Extending the model

Remembering that p was got from a measurement:

n0

x0

p n

x

λ

Tr

√√

√

√

© GdA, LTP/PSI 05/05/22, 62/71



Extending the model

The rate r gets contributions from signal and background
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Extending the model

The rate r gets contributions from signal and background

n0

x0

p n

x

λ

Tr

rSrB

√√

√

√
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Extending the model
But, since r = rS + rB ,
we need some independent knowledge of the background
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Extending the model
But, since r = rS + rB ,
we need some independent knowledge of the background

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

√√

√

√

√

√
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Extending the model
But, since r = rS + rB ,
we need some independent knowledge of the background

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

√√

√

√

√

√

(T0 and T assumed to be measured with sufficient accuracy)
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Extending the model

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

√√

√

√

√

√

(*) Assuming unity efficiency
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Extending the model

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

(∗)

√√

√

√

√

√

(*) Assuming unity efficiency
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Extending the model

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

(∗)

√√

√

√

√

√

All the rest is a technical question of
◮ writing down the joint pdf of all variables;
◮ (re-)conditioning on the assumed/observed quantities;
◮ marginalize;
◮ getting suitable summaries, including correlations.
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Extending the model

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

(∗)

√√

√

√

√

√

All the rest is a technical question of
◮ writing down the joint pdf of all variables;
◮ (re-)conditioning on the assumed/observed quantities;
◮ marginalize;
◮ getting suitable summaries, including correlations.

Or, more easily, use software grounded on probability theory,
like BUGS, JAGS, BAT, etc.
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Other interesting models
Once we have understood the basic reasoning, moving to other
inferential/predictive problems is just an exercise
(although the math can become a bit more complicate, but this is
just a technical issue).
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Other interesting models
Once we have understood the basic reasoning, moving to other
inferential/predictive problems is just an exercise
(although the math can become a bit more complicate, but this is
just a technical issue).
For example:

◮ Gaussian model;

◮ including systematics;

◮ fits;

◮ . . .

© GdA, LTP/PSI 05/05/22, 68/71



Other interesting models
Once we have understood the basic reasoning, moving to other
inferential/predictive problems is just an exercise
(although the math can become a bit more complicate, but this is
just a technical issue).
For example:

◮ Gaussian model;

◮ including systematics;

◮ fits;

◮ . . .

For some basic examples in JAGS/rjags:

◮ https://www.roma1.infn.it/~dagos/JAGS/
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Other interesting models
Once we have understood the basic reasoning, moving to other
inferential/predictive problems is just an exercise
(although the math can become a bit more complicate, but this is
just a technical issue).
For example:

◮ Gaussian model;

◮ including systematics;

◮ fits;

◮ . . .

For some basic examples in JAGS/rjags:

◮ https://www.roma1.infn.it/~dagos/JAGS/

More detailed applications (including scripts) in

◮ https://www.roma1.infn.it/~dagos/prob+stat.html

[For BAT and BAT.jl see their web pages]
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Summing up
◮ The probabilistic framework basically set up by Laplace(∗) in

his monumental work is healthy and grows up well.

[(∗) See https://www.youtube.com/watch?v=8oD6eBkjF9o and
relates book] © GdA, LTP/PSI 05/05/22, 69/71
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Handling systematics in the probabilistic approach
(Answering to a question: diagrams show the case of uncertain offset systematics,
best known to be, after proper calibration, z = 0± σz)
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◮ As starting points, particularly recommended are the last
papers, in which graphical models are systematically exploited:

◮ arXiv:2001.03466 [physics.data-an]
◮ arXiv:2009.04843 [q-bio.PE]
◮ arXiv:2012.04455 [stat.ME]
◮ arXiv:2102.11022 [stat.AP]

◮ Much more can be found in
◮ https://www.roma1.infn.it/~dagos/prob+stat.html
◮ https://www.roma1.infn.it/~dagos/dott-prob_31/
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