

Nuclear structure corrections in light muonic atoms

Sonia Bacca

Johannes Gutenberg University, Mainz

Outline

- Muonic atoms and the Lamb shift
- Proton radius puzzle
- Theory of muonic atoms
- Ab initio nuclear theory
- Impact on the measurements
- Summary and outlook

Exotic atoms

Exotic atoms

Exotic atoms

Hydrogen-like systems

Muonic atoms

muon more sensitive to the nucleus

Exotic atoms

Hydrogen-like systems

Muonic atoms

muon more sensitive to the nucleus

Can be used as a precision probe for the nucleus

Sonia Bacca

Bohr

Bohr

The proton charge radius is measured from:

electron-proton interactions:

eH spectroscopy e-p scattering 0.8770 ± 0.0045 fm

Pohl *et al.*, Nature (2010) Antognini *et al.*, Science (2013)

Is lepton universality violated?

Is lepton universality violated?

Possible beyond standard model explanations:

Batell, McKeen, Pospelov, PRL (2011) Tucker-Smith, Yavin, PRD (2011) Carlson Rislow, PRD (2014)

. . .

- Today's situation -

- Today's situation -

JLab 2019 Xiong et al., Nature 575, 147-150 (2019)York 2019 Berzginov et al., Science 365, 1007-1012 (2019)

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \frac{m_r^4 (Z\alpha)^4}{12} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \frac{m_r^4 (Z\alpha)^4}{12} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than μ H:

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \frac{m_r^4 (Z\alpha)^4}{12} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

well known

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than μ H:

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \frac{m_r^4 (Z\alpha)^4}{12} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

well known

not well known

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying the Lamb shift in other muonic atoms than μ H:

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \frac{m_r^4 (Z\alpha)^4}{12} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

well known

not well known

JGU

- $\Theta \mu D \longrightarrow$ results released in 2016
- ${\it ${\scriptstyle Θ}$} \ \mu^{4} {\rm He^{\scriptscriptstyle +}} \longrightarrow {\rm analyzing \ data}$
- $\mathbf{Q} \ \mu^{3}\mathrm{He^{+}} \longrightarrow$ analyzing data
- $\ \ \, _{\Theta} \mu^{3} H \quad \rightarrow \text{ impossible because triton is radioactive}$
- $\Theta \mu^6 Li^{2+} \longrightarrow$ future plan
- $\Theta \mu^7 Li^{2+} \rightarrow future plan$

10

Tavola periodica degli elementi

Tavola periodica degli elementi

Two photon exchange diagram

$$H = H_N + H_\mu + \Delta V$$
$$H_\mu = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

$$H = H_N + H_\mu + \Delta V$$

$$H_\mu = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

Perturbative potential: correction to the bulk Coulomb

$$\Delta V = \sum_{a}^{Z} \alpha \left(\frac{1}{r} - \frac{1}{|\vec{r} - \vec{R}_{a}|} \right)$$

$$H = H_N + H_\mu + \Delta V$$

$$H_\mu = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

Perturbative potential: correction to the bulk Coulomb

$$\Delta V = \sum_{a}^{Z} \alpha \left(\frac{1}{r} - \frac{1}{|\vec{r} - \vec{R}_{a}|} \right)$$

Using perturbation theory at second order one obtains the expression for TPE up to order $(Z\alpha)^5$

Non relativistic term

Take non-relativistic kinetic energy in muon propagator Neglect Coulomb force in the intermediate state Expand the muon matrix elements in powers of η

 $\eta = \sqrt{2m_r\omega}|m{R}-m{R}'|$

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

Non relativistic term

Take non-relativistic kinetic energy in muon propagator Neglect Coulomb force in the intermediate state Expand the muon matrix elements in powers of η

η= $\sqrt{2m_r\omega}|{m R}-{m R}'|$

Non relativistic term

Take non-relativistic kinetic energy in muon propagator Neglect Coulomb force in the intermediate state Expand the muon matrix elements in powers of η

 η = $\sqrt{2m_r\omega}|m{R}-m{R}'|$

 \star |R-R'| "virtual" distance traveled by the proton between the two-photon exchange

★ Uncertainty principle $|\mathbf{R} - \mathbf{R}'| \sim \frac{1}{\sqrt{2m_N\omega}}$ ★ $\eta = \sqrt{2m_r\omega} |\mathbf{R} - \mathbf{R}'| \sim \sqrt{\frac{m_r}{m_N}} = 0.33$

13

Non relativistic term

 \star $\delta^{(0)} \propto |m{R} - m{R}'|^2$

dominant term, related to the energy-weighted integral

$$\delta_{D1}^{(0)} = -\frac{2\pi m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{2m_r}{\omega}} S_{D_1}(\omega)$$

of the dipole response function

$$S_{D1}(\omega) = \frac{1}{2J_0 + 1} \sum_{N \neq N_0} |\langle NJ| |\hat{D}_1| |N_0 J_0\rangle|^2 \delta(\omega - \omega_N)$$

Non relativistic term

 $\star ~~\delta^{(0)} \propto |oldsymbol{R}-oldsymbol{R}'|^2$

dominant term, related to the energy-weighted integral

$$\delta_{D1}^{(0)} = -\frac{2\pi m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{2m_r}{\omega}} S_{D_1}(\omega)$$

 \star $\delta^{(1)} \propto |m{R} - m{R}'|^3$ Related to Zemach moment elastic contribution

$$\delta_{Z3}^{(1)} = \frac{\pi}{3} m_r (Z\alpha)^2 \phi^2(0) \iint d^3 R d^3 R' |\mathbf{R} - \mathbf{R}'|^3 \rho_0^p(\mathbf{R}) \rho_0^p(\mathbf{R}')$$

15

Non relativistic term

 \star $\delta^{(0)} \propto |oldsymbol{R}-oldsymbol{R}'|^2$

dominant term, related to the energy-weighted integral

$$\delta_{D1}^{(0)} = -\frac{2\pi m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{2m_r}{\omega}} S_{D_1}(\omega)$$

 \star $\delta^{(1)} \propto |m{R} - m{R}'|^3$ Related to Zemach moment elastic contribution

$$\delta_{Z3}^{(1)} = \frac{\pi}{3} m_r (Z\alpha)^2 \phi^2(0) \iint d^3 R d^3 R' |\mathbf{R} - \mathbf{R}'|^3 \rho_0^p(\mathbf{R}) \rho_0^p(\mathbf{R}')$$

 $\star~~\delta^{(2)} \propto |m{R}-m{R}'|^4$

leads to energy-weighted integrals of three different response functions $S_{R^2}(\omega), S_Q(\omega), S_{D1D3}(\omega)$

15

Coulomb term

Consider the Coulomb force in the intermediate states Naively $\delta_C^{(0)} \sim (Z\alpha)^6$, actually logarithmically enhanced $\delta_C^{(0)} \sim (Z\alpha)^5 \log(Z\alpha)$ Friar (1977), Pachucki (2011) Related to the dipole response function

Coulomb term

Consider the Coulomb force in the intermediate states Naively $\delta_C^{(0)} \sim (Z\alpha)^6$, actually logarithmically enhanced $\delta_C^{(0)} \sim (Z\alpha)^5 \log(Z\alpha)$ Friar (1977), Pachucki (2011) Related to the dipole response function

Relativistic terms

Take the relativistic kinetic energy in muon propagator Related to the dipole response function

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \, K_{L(T)} \left(\frac{\omega}{m_r}\right) \, S_{D_1}(\omega)$$

Coulomb term

Consider the Coulomb force in the intermediate states Naively $\delta_C^{(0)} \sim (Z\alpha)^6$, actually logarithmically enhanced $\delta_C^{(0)} \sim (Z\alpha)^5 \log(Z\alpha)$ Friar (1977), Pachucki (2011) Related to the dipole response function

Relativistic terms

Take the relativistic kinetic energy in muon propagator Related to the dipole response function

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \, K_{L(T)} \left(\frac{\omega}{m_r}\right) \, S_{D_1}(\omega)$$

Finite nucleon-size corrections

Consider finite nucleon-size by including their charge distributions and obtain terms, e.g.,

$$\delta_{R1}^{(1)} = -8\pi m_r (Z\alpha)^2 \phi^2(0) \int \int d^3 R d^3 R' |\mathbf{R} - \mathbf{R}'| \left[\frac{2}{\beta^2} \rho_0^{pp}(\mathbf{R}, \mathbf{R}') - \lambda \rho_0^{np}(\mathbf{R}, \mathbf{R}') \right]$$

$$\delta_{\rm TPE} = \delta_{\rm Zem}^A + \delta_{\rm Zem}^N + \delta_{\rm pol}^A + \delta_{\rm pol}^N$$

$$\delta_{\rm TPE} = \delta_{\rm Zem}^A + \delta_{\rm Zem}^N + \delta_{\rm pol}^A + \delta_{\rm pol}^N$$

$$\begin{split} \delta_{\text{pol}}^{A} &= \delta_{D1}^{(0)} + \delta_{R3}^{(1)} + \delta_{Z3}^{(1)} + \delta_{R^{2}}^{(2)} + \delta_{Q}^{(2)} + \delta_{D1D3}^{(2)} + \delta_{C}^{(0)} \\ &+ \delta_{L}^{(0)} + \delta_{T}^{(0)} + \delta_{M}^{(0)} + \delta_{R1}^{(1)} + \delta_{Z1}^{(1)} + \delta_{NS}^{(2)} \end{split}$$

$$\delta_{\rm TPE} = \delta_{\rm Zem}^A + \delta_{\rm Zem}^N + \delta_{\rm pol}^A + \delta_{\rm pol}^N$$

$$\begin{split} \delta_{\text{pol}}^{A} &= \delta_{D1}^{(0)} + \delta_{R3}^{(1)} + \delta_{Z3}^{(1)} + \delta_{R^{2}}^{(2)} + \delta_{Q}^{(2)} + \delta_{D1D3}^{(2)} + \delta_{C}^{(0)} \\ &+ \delta_{L}^{(0)} + \delta_{T}^{(0)} + \delta_{M}^{(0)} + \delta_{R1}^{(1)} + \delta_{Z1}^{(1)} + \delta_{NS}^{(2)} \end{split}$$

$$\delta_{\rm Zem}^A = -\delta_{Z3}^{(1)} - \delta_{Z1}^{(1)}$$

$$\delta_{\rm TPE} = \delta_{\rm Zem}^A + \delta_{\rm Zem}^N + \delta_{\rm pol}^A + \delta_{\rm pol}^N$$

$$\delta_{\text{pol}}^{A} = \delta_{D1}^{(0)} + \delta_{R3}^{(1)} + \delta_{Z3}^{(1)} + \delta_{R^{2}}^{(2)} + \delta_{Q}^{(2)} + \delta_{D1D3}^{(2)} + \delta_{C}^{(0)} + \delta_{L}^{(0)} + \delta_{T}^{(0)} + \delta_{M}^{(0)} + \delta_{R1}^{(1)} + \delta_{Z1}^{(1)} + \delta_{NS}^{(2)}$$

$$\delta^{A}_{\rm Zem} = -\delta^{(1)}_{Z3} - \delta^{(1)}_{Z1}$$

Friar an Payne ('97)

17

A matter of precision

The uncertainty of the extracted radius depends on the precision of the TPE

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

Even though, roughly: 95% 4% 1%

The uncertainty on TPE exceeds the experimental precision, hence reducing uncertainties is important

18

A matter of precision

The uncertainty of the extracted radius depends on the precision of the TPE

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

Even though, roughly: 95% 4% 1%

The uncertainty on TPE exceeds the experimental precision, hence reducing uncertainties is important

Uncertainties comparison

Atom	Exp uncertainty on ΔE_{2S-2P}	Uncertainty on TPE prior to the discovery of the proton radius puzzle
μ^2 H	0.003 meV	0.03 meV
µ³He⁺	0.08 meV	1 meV
µ⁴He⁺	0.06 meV	0.6 meV
μ ^{6,7} Li++	0.7 meV	4 meV

Ab Initio Nuclear Theory

• Start from nuclear Hamiltonians

$$H_N = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$$

• Solve the Schrödinger equation for few-nucleons

$$H_N |\psi_i\rangle = E_i |\psi_i\rangle$$

using numerical methods that allow to assign uncertainties

• Chiral effective filed theory

Systematic expansion

$$\mathcal{L} = \sum_{\nu} c_{\nu} \left(\frac{Q}{\Lambda_b}\right)^{\nu}$$

• Chiral effective filed theory

Systematic expansion

$$\mathcal{L} = \sum_{\nu} c_{\nu} \left(\frac{Q}{\Lambda_b}\right)^{\nu}$$

Details of short distance physics not resolved, but captured in low energy constants (LEC)

• Chiral effective filed theory

Systematic expansion

$$\mathcal{L} = \sum_{
u} c_{
u} \left(rac{Q}{\Lambda_b}
ight)^{
u}$$

Details of short distance physics not resolved, but captured in low energy constants (LEC)

Nuclear Hamiltonians

• Chiral effective filed theory

Systematic expansion

LO

2N force

 $\mathcal{L} = \sum_{
u} c_{
u} \left(rac{Q}{\Lambda_b}
ight)^{
u}$

3N force

4N force

Details of short distance physics not resolved, but captured in low energy constants (LEC)

 $\nu = 0$ NLO $\nu = 2$ $\nu = 2$ V = 1

Nuclear Hamiltonians

• Chiral effective filed theory

Systematic expansion

Details of short distance physics not resolved, but captured in low energy constants (LEC)

• Traditional hamiltonians

Exploit all other symmetries (e.g. translational, rotational invariance) but the chiral; use some ansatz for short range physics; Fit NN phase shifts

20

Hyperspherical Harmonics

A from 3 up to 6, 7

(for A=2 we use an harmonic oscillator basis)

 $|\psi(\vec{r}_1,\vec{r}_2,\ldots,\vec{r}_A)\rangle = |\varphi(\vec{R}_{CM})\Psi(\vec{\eta}_1,\vec{\eta}_2,\ldots,\vec{\eta}_{A-1})\rangle$

Recursive definition of hyper-spherical coordinates

$$ho, \Omega \qquad
ho^2 = \sum_{i=1}^A r_i^2 = \sum_{i=1}^{A-1} \eta_i^2$$

$$\Psi = \sum_{[K],\nu}^{K_{max},\nu_{max}} c_{\nu}^{[K]} e^{-\rho/2} \rho^{n/2} L_{\nu}^{n} (\frac{\rho}{b}) [\mathcal{Y}_{[K]}^{\mu}(\Omega) \chi_{ST}^{\bar{\mu}}]_{JT}^{a}$$

Hyperspherical Harmonics

A from 3 up to 6, 7

Lorentz integral transform method

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

Exact knowledge limited in energy and mass number

Lorentz integral transform method

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

Reduce the continuum problem to a bound-state-like equation

An example

S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

An example

S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

An example

S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

JGU

Use these technology to analyze muonic atoms

26

Muonic Deuterium

O.J. Hernandez et al, Phys. Lett. B **736**, 344 (2014) AV18 in agreement with Pachucki (2011)+ Pachucki, Wienczek (2015)

Deuteron radius puzzle

Deuteron radius puzzle

Pohl et al, Science 353, 669 (2016)

Deuteron radius puzzle

Pohl et al, Science 353, 669 (2016)

 μ H+iso: r_p from μ H and deuterium isotopic shift r²_d -r²_p: Parthey et al., PRL **104** 233001 (2010)

29
Deuteron radius puzzle

Pohl et al, Science 353, 669 (2016)

 μ H+iso: r_p from μ H and deuterium isotopic shift r²_d -r²_p: Parthey et al., PRL **104** 233001 (2010)

Order-by-order chiral expansion

Only sightly mitigate the "small" proton radius puzzle (2.6 to 2 σ)

Higher order corrections in α

Pachucki et al., Phys. Rev. A 97 062511 (2018)

 $(Z\alpha)^6$ correction, negligible

Higher order corrections in α

Pachucki et al., Phys. Rev. A **97** 062511 (2018) $(Z\alpha)^6$ correction, negligible

One the many α^6 corrections, supposedly the largest Kalinowski, Phys. Rev. A **99** 030501 (2019)

$$\delta_{\rm TPE} = -1.750^{+14}_{-16}~{
m meV}~{
m Theory}$$

 $\delta_{\rm TPE} = -1.7638(68)~{
m meV}~{
m Exp}$

Consistent within 1σ solves the small deuteron-radius puzzle

Large deuteron-radius puzzle still unsolved!

New data on electron scattering expected from MAMI and from the future MESA

31

Uncertainties quantifications

Uncertainties sources

- Numerical
- Nuclear model
- Nucleon-size
- Truncation of multiples
- η-expansion
- expansion in $Z\alpha$

Impact of ab initio theory

- Reduction of Uncertainties -

Atom	Exp uncertainty on ΔE _{2S-2P}	Uncertainty on TPE prior to the discovery of the puzzle	Uncertainty on TPE: ab initio
μ^2 H	0.003 meV	0.03* meV	0.02 meV
µ³He⁺	0.08 meV	1 meV	0.3 meV
µ⁴He⁺	0.06 meV	0.6 meV	0.4 meV
μ ^{6,7} Li++	0.7 meV	4 meV	

*Leidemann, Rosenfelder '95 using few-body methods

Impact of ab initio theory

- Reduction of Uncertainties -

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

Impact of ab initio theory

- Reduction of Uncertainties -

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

Muonic Lithium

$$\delta_{\rm C}^{(0)} \propto \int_0^\infty d\omega \frac{m_r}{\omega} \ln \frac{2(Z\alpha)^2 m_r}{\omega} S_{\rm D1}(\omega)$$

Simone Li Muli PhD candidate in Mz

JGU

ω [MeV]

Muonic Lithium

Simone Li Muli PhD candidate in Mz

S.Li Muli, S.B, A. Poggialini, SciPost (2020)

100

-200

-100

0 [meV]

Muonic Lithium

Simone Li Muli PhD candidate in Mz

S.Li Muli, S.B, A. Poggialini, SciPost (2020)

 -15 ± 4

 -21 ± 4

Drake et al., PRA (1985)

Summary and Outlook

- Ab initio calculations have allowed to substantially reduce uncertainties
- Independently on the nature of the puzzle, these calculations are needed to support any spectroscopic measurement with muonic atoms
- In the future we will investigate the Lamb shift in muonic lithium atoms and address the hyperfine splitting

Summary and Outlook

- Ab initio calculations have allowed to substantially reduce uncertainties
- Independently on the nature of the puzzle, these calculations are needed to support any spectroscopic measurement with muonic atoms
- In the future we will investigate the Lamb shift in muonic lithium atoms and address the hyperfine splitting

Thanks to my collaborators

N.Barnea, O.J. Hernandez, C.Ji, S. Li Muli, N. Nevo Dinur, A. Poggialini

38

Summary and Outlook

- Ab initio calculations have allowed to substantially reduce uncertainties
- Independently on the nature of the puzzle, these calculations are needed to support any spectroscopic measurement with muonic atoms
- In the future we will investigate the Lamb shift in muonic lithium atoms and address the hyperfine splitting

Thanks to my collaborators

N.Barnea, O.J. Hernandez, C.Ji, S. Li Muli, N. Nevo Dinur, A. Poggialini

Thank you for your attention!